Amyloid aggregation is a key process in amyloidoses and neurodegenerative diseases. Hydrophobicity is one of the major driving forces for this type of aggregation, as an increase in hydrophobicity generally correlates with aggregation susceptibility and rate. However, most experimental systems in vitro and prediction tools in silico neglect the contribution of protective osmolytes present in the cellular environment. Here, we assessed the role of hydrophobic mutations in amyloid aggregation in the presence of osmolytes. To achieve this goal, we used the model protein human muscle acylphosphatase (mAcP) and mutations to leucine that increased its hydrophobicity without affecting its thermodynamic stability. Osmolytes significantly slowed down the aggregation kinetics of the hydrophobic mutants, with an effect larger than that observed on the wild-type protein. The effect increased as the mutation site was closer to the middle of the protein sequence. We propose that the preferential exclusion of osmolytes from mutation-introduced hydrophobic side-chains quenches the aggregation potential of the ensemble of partially unfolded states of the protein by inducing its compaction and inhibiting its self-assembly with other proteins. Our results suggest that including the effect of the cellular environment in experimental setups and predictive softwares, for both mechanistic studies and drug design, is essential in order to obtain a more complete combination of the driving forces of amyloid aggregation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2023.168281 | DOI Listing |
Chem Commun (Camb)
January 2025
Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India.
KRS-1, a biocompatible nickel(II) complex, is introduced as a potent fluorescent probe for PrP fibrillar aggregates. KRS-1 shows a 15-fold enhancement in PL intensity and detects all stages of PrP aggregation. Fluorescence microscopy confirms its efficacy in identifying PrP fibrillar aggregates in HT-22 cells.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India.
Neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease, present formidable challenges in modern medicine due to their complex pathologies and the absence of curative treatments. Despite advances in symptomatic management, early diagnosis remains essential for mitigating disease progression and improving patient outcomes. Traditional diagnostic methods, such as MRI, PET, and cerebrospinal fluid biomarker analysis, are often inadequate for the early detection of these diseases.
View Article and Find Full Text PDFBiochemistry
January 2025
Sunita Sanghi Centre of Aging and Neurodegenerative Diseases (SCAN), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
Aggregation of α-synuclein (α-Syn) and Lewy body (LB) formation are the key pathological events implicated in Parkinson's disease (PD) that spread in a prion-like manner. However, biophysical and structural characteristics of toxic α-Syn species and molecular events that drive early events in the propagation of α-Syn amyloids in a prion-like manner remain elusive. We used a neuronal cell model to demonstrate the size-dependent native biological activities of α-Syn fibril seeds.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States. Electronic address:
Human calcitonin (hCT) is a peptide hormone that regulates calcium homeostasis, but its abnormal aggregation can disrupt physiological functions and increase the risk of medullary thyroid carcinoma. To elucidate the mechanisms underlying hCT aggregation, we investigated the self-assembly dynamics of hCT segments (hCT, hCT, and hCT) and the folding and dimerization of full-length hCT through microsecond atomistic discrete molecular dynamics (DMD) simulations. Our results revealed that hCT and hCT predominantly existed as isolated monomers with transient small-sized oligomers, indicating weak aggregation tendencies.
View Article and Find Full Text PDFAnal Chem
January 2025
Institut de Recherche en Santé, Environnement et Travail (Irset)─Inserm─EHESP, UMR_S 1085, Université de Rennes, 9 av. du Professeur Léon Bernard, F-35042 Rennes, France.
Amyloidosis is a group of proteinopathies characterized by the systemic or organ-specific deposition of proteins in the form of amyloid fibers. Nearly 40 proteins play a role in these pathologies, and the structures of the associated fibers are beginning to be determined by Cryo-EM. However, the molecular events underlying the process, such as fiber nucleation and elongation, are poorly understood, which impairs developing efficient therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!