Background: With a large number of accidents caused by the decline in the vigilance of operators, finding effective automatic vigilance monitoring methods is a work of great significance in recent years. Based on physiological signals and machine learning algorithms, researchers have opened up a path for objective vigilance estimation.
Methods: Sparse representation (SR)-based recognition algorithms with excellent performance and simple models are very promising approaches in this field. This paper aims to study the adaptability and performance improvement of truncated l distance (TL1) kernel on SR-based algorithm in the context of physiological signal vigilance estimation. Compared with the traditional radial basis function (RBF), the TL1 kernel has good adaptiveness to nonlinearity and is suitable for the discrimination of complex physiological signals. A recognition framework based on TL1 and SR theory is proposed. Firstly, the inseparable physiological features are mapped to the reproducing kernel Kreĭn space through the infinite-dimensional projection of the TL1 kernel. Then the obtained kernel matrix is converted into the symmetric positive definite matrix according to the eigenspectrum approaches. Finally, the final prediction result is obtained through the sparse representation regression process.
Results: We verified the performance of the proposed framework on the popular SEED-VIG dataset containing physiological signals (electroencephalogram and electrooculogram) associated with vigilance. In the experimental results, the TL1 kernel is superior to the RBF kernel in both performance and kernel parameter stability.
Conclusions: This demonstrates the effectiveness of the TL1 kernel in distinguishing physiological signals and the excellent vigilance estimation capability of the proposed framework. Moreover, the contribution of our research motivates the development of physiological signal recognition based on kernel methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2023.107773 | DOI Listing |
Sensors (Basel)
December 2024
Organ Support and Automation Technologies Group, U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX 78234, USA.
Prehospital medical care is a major challenge for both civilian and military situations as resources are limited, yet critical triage and treatment decisions must be rapidly made. Prehospital medicine is further complicated during mass casualty situations or remote applications that require more extensive medical treatments to be monitored. It is anticipated on the future battlefield where air superiority will be contested that prolonged field care will extend to as much 72 h in a prehospital environment.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Division of Neurological Rehabilitiation, Instituto Nacional de Rehabilitacion Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico.
Stroke is a global health issue caused by reduced blood flow to the brain, which leads to severe motor disabilities. Measuring oxygen levels in the brain tissue is crucial for understanding the severity and evolution of stroke. While CT or fMRI scans are preferred for confirming a stroke due to their high sensitivity, Near-Infrared Spectroscopy (NIRS)-based systems could be an alternative for monitoring stroke evolution.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
Monitoring cerebral oxygenation and metabolism, using a combination of invasive and non-invasive sensors, is vital due to frequent disruptions in hemodynamic regulation across various diseases. These sensors generate continuous high-frequency data streams, including intracranial pressure (ICP) and cerebral perfusion pressure (CPP), providing real-time insights into cerebral function. Analyzing these signals is crucial for understanding complex brain processes, identifying subtle patterns, and detecting anomalies.
View Article and Find Full Text PDFSensors (Basel)
December 2024
REMIT (Research on Economics, Management and Information Technologies), IJP (Instituto Jurídico Portucalense), Universidade Portucalense, Rua Dr. António Bernardino de Almeida, 541-619, 4200-072 Porto, Portugal.
Some previous studies have focused on using physiological signals to detect stress in individuals with ASD through wearable devices, yet few have focused on how to design such solutions. Wearable technology may be a valuable tool to aid parents and caregivers in monitoring the emotional states of individuals with ASD who are at high risk of experiencing very stressful situations. However, effective wearable devices for individuals with ASD may need to differ from solutions for those without ASD.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.
The field of emotion recognition from physiological signals is a growing area of research with significant implications for both mental health monitoring and human-computer interaction. This study introduces a novel approach to detecting emotional states based on fractal analysis of electrodermal activity (EDA) signals. We employed detrended fluctuation analysis (DFA), Hurst exponent estimation, and wavelet entropy calculation to extract fractal features from EDA signals obtained from the CASE dataset, which contains physiological recordings and continuous emotion annotations from 30 participants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!