Objective: Mechanisms that lead to Eosinophilic Chronic Rhinosinusitis (ECRS) are not fully established in the literature. It is desirable to assess ECRS in a model that embraces most of the related events. This article reviewed the murine models for ECRS and compared them regarding eosinophilic polypoid formation.
Methods: The authors reviewed the articles that included the terms "chronic rhinosinusitis" OR "chronic sinusitis" AND "animal model". We analyzed articles in English that evaluated both the number of polyps and the number of eosinophils in the sinus mucosa of mouse models.
Results: We identified a total of 15 articles describing different models of ECRS that used BALB/c or C57BL/6 mice, and different triggers/stimulants such as Staphylococcus aureus Enterotoxin B (SEB) + Ovalbumin (OVA); House Dust Mite (HDM) ± Ovalbumin (OVA); and Aspergillus oryzae Protease (AP) + Ovalbumin (OVA). OVA associated with SEB was the commonest protocol to induce ECRS in both BALB/c and C57BL/6 mice, and it produced a robust response of eosinophilic nasal polyps in both. AP + OVA protocol also led to a good ECRS response. The other models were not considered adequate to produce eosinophilic polyps in mice.
Conclusion: In conclusion, OVA associated with SEB seems to produce the most robust eosinophilic sinonasal inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515297 | PMC |
http://dx.doi.org/10.1016/j.bjorl.2023.101328 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!