Crizotinib, a small-molecule tyrosine kinase inhibitor targeting ALK, MET and ROS1, is the first-line drug for ALK-positive metastatic non-small cell lung cancer and is associated with severe, sometimes fatal, cases of cardiac failure, which increases the risk of mortality. However, the underlying mechanism remains unclear, which causes the lack of therapeutic strategy. We established in vitro and in vivo models for crizotinib-induced cardiotoxicity and found that crizotinib caused left ventricular dysfunction, myocardial injury and pathological remodeling in mice and induced cardiomyocyte apoptosis and mitochondrial injury. In addition, we found that crizotinib prevented the degradation of MET protein by interrupting autophagosome-lysosome fusion and silence of MET or re-activating macroautophagy/autophagy flux rescued the cardiomyocytes death and mitochondrial injury caused by crizotinib, suggesting that impaired autophagy activity is the key reason for crizotinib-induced cardiotoxicity. We further confirmed that recovering the phosphorylation of PRKAA/AMPK (Ser485/491) by metformin re-activated autophagy flux in cardiomyocytes and metformin rescued crizotinib-induced cardiomyocyte injury and cardiac complications. In summary, we revealed a novel mechanism for crizotinib-induced cardiotoxicity, wherein the crizotinib-impaired autophagy process causes cardiomyocyte death and cardiac injury by inhibiting the degradation of MET protein, demonstrated a new function of impeded autophagosome-lysosome fusion in drugs-induced cardiotoxicity, pointed out the essential role of the phosphorylation of PRKAA (Ser485/491) in autophagosome-lysosome fusion and confirmed metformin as a potential therapeutic strategy for crizotinib-induced cardiotoxicity. AAV: adeno-associated virus; ACAC/ACC: acetyl-Co A carboxylase; AMP: adenosine monophosphate; AMPK: AMP-activated protein kinase; ATG5: autophagy related 5; ATG7: autophagy related 7; CHX: cycloheximide; CKMB: creatine kinase myocardial band; CQ: chloroquine; c-PARP: cleaved poly (ADP-ribose) polymerase; DAPI: 4'6-diamidino-2-phenylindole; EF: ejection fraction; FOXO: forkhead box O; FS: fractional shortening; GSEA: gene set enrichment analysis; H&E: hematoxylin and eosin; HF: heart failure; HW: TL: ratio of heart weight to tibia length; IR: ischemia-reperfusion; KEGG: Kyoto encyclopedia of genes and genomes; LAMP2: lysosomal-associated membrane protein 2; LDH: lactate dehydrogenase; MCMs: mouse cardiomyocytes; MMP: mitochondrial membrane potential; mtDNA: mitochondrial DNA; MYH6: myosin, heavy peptide 6, cardiac muscle, alpha; MYH7: myosin, heavy peptide 7, cardiac muscle, beta; NPPA: natriuretic peptide type A; NPPB: natriuretic peptide type B; PI: propidium iodide; PI3K: phosphoinositide 3-kinase; PRKAA/AMPKα: protein kinase AMP-activated catalytic subunit alpha; qPCR: quantitative real-time PCR; SD: standard deviation; SRB: sulforhodamine B; TKI: tyrosine kinase inhibitor; WGA: wheat germ agglutinin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10813574 | PMC |
http://dx.doi.org/10.1080/15548627.2023.2259216 | DOI Listing |
Mol Cell Biochem
December 2024
Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, 8 Sanjiaohu Road, Wuhan, 430056, China.
Dysregulated expression of microtubule-associated protein tau (MAPT) has been reported in a variety of human cancers. However, whether and how Tau influences hepatocellular carcinogenesis remains elusive. This study was aimed to investigate the role and the underlying mechanism of Tau in the proliferation, invasion, migration and sorafenib sensitivity of hepatocellular carcinoma (HCC) cells.
View Article and Find Full Text PDFJ Pharmacol Sci
January 2025
Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan.
The processes of autophagy, including autophagosome formation, fusion of autophagosomes with lysosomes, and degradation of autophagosomes by lysosomes, are regulated by various mechanisms. We recently found that treatment with resveratrol, an activator of the NAD-dependent protein deacetylase Sirtuin-1 (SIRT1), in a mouse model prevented autophagosome accumulation in the heart with high mTORC1 activity. In this study, we investigated whether SIRT1 mediates the effects of resveratrol on autophagosome elimination using a cardiomyocyte model.
View Article and Find Full Text PDFiScience
December 2024
Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China.
We aim to investigate muscle ARNT-like protein 1 (BMAL1) regulation of syntaxin17 (STX17) in mouse hippocampal neurons, focusing on autophagy and amyloid-β (Aβ) deposition. Autophagosome-lysosome fusion in APP/PS1 hippocampal tissues was observed using transmission electron microscopy, while mRNA levels of LC3II and P62 were measured via reverse-transcription PCR (RT-PCR) after Amyloid precursor protein (APP) overexpression. STX17, linked to autophagy and differentially expressed in Alzheimer's disease (AD) brains, was knocked down or overexpressed to assess its effects.
View Article and Find Full Text PDFUnlabelled: Coxsackievirus B3 (CVB3) is a non-enveloped picornavirus that can cause systemic inflammatory diseases including myocarditis, pericarditis, pancreatitis, and meningoencephalitis. We have previously reported that following infection, CVB3 localizes to mitochondria, inducing mitochondrial fission and mitophagy, while inhibiting lysosomal degradation by blocking autophagosome-lysosome fusion. This results in the release of virus-laden mitophagosomes from the host cell as infectious extracellular vesicles (EVs) which allow non-lytic viral egress.
View Article and Find Full Text PDFBiochem Pharmacol
December 2024
School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming 650500, China. Electronic address:
Our previous study demonstrated that Berberine (BBR) significantly enhances autophagic flux, alleviating ischemic neuronal injury by restoring autolysosomal function, but how BBR augmented autolysosomal functions remained elusive. N-ethyl-maleimide sensitive factor (NSF) is considered as a major ATPase to reactivate soluble NSF attachment protein receptors (SNAREs), which directly mediate autophagosome-lysosome fusion. However, NSF was dramatically inactivated by ischemia to hamper membrane-membrane fusion, leading to autophagic/lysosomal dysfunction in neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!