Cell senescence, the senescence-associated secretory phenotype, and cancers.

PLoS Biol

Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America.

Published: September 2023

Cellular senescence is a cell fate caused by multiple stresses. A 2008 article in PLOS Biology reported a senescence-associated secretory phenotype that can promote inflammation and cancer, eventually enabling the development of senolytic drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547493PMC
http://dx.doi.org/10.1371/journal.pbio.3002326DOI Listing

Publication Analysis

Top Keywords

senescence-associated secretory
8
secretory phenotype
8
cell senescence
4
senescence senescence-associated
4
phenotype cancers
4
cancers cellular
4
cellular senescence
4
senescence cell
4
cell fate
4
fate caused
4

Similar Publications

hESC-derived extracellular vesicles enriched with MFGE-8 and the GSH redox system act as senotherapeutics for neural stem cells in ischemic stroke.

Free Radic Biol Med

January 2025

Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea. Electronic address:

Human embryonic stem cells (hESCs) and their extracellular vesicles (EVs) hold significant potential for tissue repair and regeneration. Neural stem cells (NSCs) in the adult brain often acquire senescent phenotypes after ischemic injuries, releasing neurodegenerative senescence-associated secretory phenotype factors. In this study, we investigated the senotherapeutic effects of hESC-EVs on NSCs and confirmed their neuroprotective effects in neurons via rejuvenation of NSC secretions.

View Article and Find Full Text PDF

Involvement of TGF-β, mTOR, and inflammatory mediators in aging alterations during myxomatous mitral valve disease in a canine model.

Geroscience

January 2025

Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland.

Inflammaging, a state of chronic low-grade inflammation associated with aging, has been linked to the development and progression of various disorders. Cellular senescence, a state of irreversible growth arrest, is another characteristic of aging that contributes to the pathogenesis of cardiovascular pathology. Senescent cells accumulate in tissues over time and secrete many inflammatory mediators, further exacerbating the inflammatory environment.

View Article and Find Full Text PDF

Characterization of senescence-associated transcripts in the human placenta.

Placenta

January 2025

Magee-Women's Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, 15213, USA. Electronic address:

Introduction: Fusion of mononucleated cytotrophoblasts into syncytium leads to trophoblast senescence. Yet, premature senescence is associated with preeclampsia, fetal growth restriction (FGR), and related obstetrical syndromes. A set of 28 transcripts that comprise senescence-associated secretory phenotype (SASP) was recently described in placentas from women with preeclampsia.

View Article and Find Full Text PDF

Integrative Analysis of Radiation-Induced Senescence-Associated Secretory Phenotype Factors in Kidney Cancer Progression.

Genes (Basel)

January 2025

Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.

Background: Ionizing radiation (IR) is a well-known inducer of cellular senescence and the senescence-associated secretory phenotype (SASP). SASP factors play dual roles in cancer, either promoting or inhibiting its development. This study investigates IR-induced SASP factors specifically secreted by renal cortical epithelial (RCE) cells and their role in promoting renal cell carcinoma (RCC) progression.

View Article and Find Full Text PDF

The biological process of aging is influenced by a complex interplay of genetic, environmental, and epigenetic factors. Recent advancements in the fields of epigenetics and senolytics offer promising avenues for understanding and addressing age-related diseases. Epigenetics refers to heritable changes in gene expression without altering the DNA sequence, with mechanisms like DNA methylation, histone modification, and non-coding RNA regulation playing critical roles in aging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!