Stock market forecasting is one of the most challenging problems in today's financial markets. According to the efficient market hypothesis, it is almost impossible to predict the stock market with 100% accuracy. However, Machine Learning (ML) methods can improve stock market predictions to some extent. In this paper, a novel strategy is proposed to improve the prediction efficiency of ML models for financial markets. Nine ML models are used to predict the direction of the stock market. First, these models are trained and validated using the traditional methodology on a historic data captured over a 1-day time frame. Then, the models are trained using the proposed methodology. Following the traditional methodology, Logistic Regression achieved the highest accuracy of 85.51% followed by XG Boost and Random Forest. With the proposed strategy, the Random Forest model achieved the highest accuracy of 91.27% followed by XG Boost, ADA Boost and ANN. In the later part of the paper, it is shown that only classification report is not sufficient to validate the performance of ML model for stock market prediction. A simulation model of the financial market is used in order to evaluate the risk, maximum draw down and returns associate with each ML model. The overall results demonstrated that the proposed strategy not only improves the stock market returns but also reduces the risks associated with each ML model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10513304 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0286362 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!