The most common cause of sensorineural hearing loss is damage of auditory hair cells. Tumor necrosis factor-alpha (TNF-α) is closely associated with sensorineural hearing loss. The present study examined the preconditioning effect of dexamethasone (DEX) on TNF-α-induced ototoxicity in mouse auditory hair cells (HEI-OC1) and cochlear explants. Treatment of HEI-OC1 with 10 ng/ml TNF-α for 24 h decreased cell viability, increased the accumulation of reactive oxygen species (ROS), and induced caspase-mediated apoptotic signaling pathways. Pretreatment with 10 nM DEX for 6 h before TNF-α exposure restored cell viability, decreased ROS accumulation, and attenuated apoptotic signaling activation induced by TNF-α. Incubation of cochlear explants with 20 ng/ml TNF-α for 24 h resulted in significant loss of both inner hair cells (IHCs) and outer hair cells (OHCs) and an increase in apoptotic activation accessed by annexin V staining. The cochlear explants pre-incubated with 10 nM DEX attenuated TNF-α ototoxicity in both IHCs and OHCs and apoptotic cell death. These results indicated that DEX plays a protective role in ototoxicity induced by TNF-α through attenuation of caspase-dependent apoptosis signaling pathway and ROS accumulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10513268 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291780 | PLOS |
Front Biosci (Landmark Ed)
January 2025
Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.
Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.
Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.
Pharmaceuticals (Basel)
January 2025
Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
: , a bacterium residing in hair follicles, triggers acne by inducing monocyte-mediated inflammatory cytokine production. Gedunin, a limonoid derived from (commonly known as neem), is renowned for its antifungal, antimalarial, anticancer, anti-inflammatory, and neuroprotective effects. However, its role in mitigating -induced skin inflammation remains unexplored.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Inha University, Incheon 22332, Republic of Korea.
Gravitational changes have been shown to cause significant abnormalities in various body systems, including the cardiovascular, immune, vestibular, and musculoskeletal systems. While numerous studies have examined the response of the vestibular system to gravitational stimulation, research on functional changes in the peripheral inner ear remains limited. The inner ear comprises two closely related structures: the vestibule and cochlea.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai 201306, China.
The lateral line system in fish is crucial for detecting water flow, which facilitates various behaviors such as prey detection, predator avoidance, and rheotaxis. The cupula, a gelatinous structure overlaying the hair cells in neuromasts, plays a key role in transmitting mechanical stimuli to hair cells. However, the molecular composition of the cupula matrix remains poorly understood.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto 390-8621, Japan.
belongs to the unconventional myosin superfamily, and the myosin IIIa protein localizes on the tip of the stereocilia of vestibular and cochlear hair cells. Deficiencies in have been reported to cause the deformation of hair cells into abnormally long stereocilia with an increase in spacing. is a rare causative gene of autosomal recessive sensorineural hearing loss (DFNB30), with only 13 cases reported to date.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!