Tobacco (Nicotiana tabacum L.) is an important economic crop that is widely grown around the world. Its annual production in China is estimated at 2.2 million tons (Berbeć and Matyka 2020). Since 2022, a root rot disease was sporadically observed on tobacco seedlings on cultivar Yunyan 87 in cultivated tobacco fields in the Hunan province of China. A disease incidence of about 10% occurred across 48 ha of tobacco fields. The affected tobacco plants had slow and stunted growth with yellowing leaves. The roots turned grayish brown, decayed, and died. Diseased roots were collected from six fields and cut into small pieces (5 mm ×5 mm) from the edge of the rotted portions, and then sterilized with 70% ethanol for 10 s, 0.1% HgCl2 for 1 min, and washed in sterilized water three times. All the sterilized tissue were placed on potato dextrose agar (PDA) medium and cultured at 26 ℃ in the dark. About 3 days later, colonies with similar morphology were removed and sub-cultured on fresh PDA. A total of six strains were obtained from six tobacco samples. Strains were white and had radial growth on PDA. Hyphae were aseptate and the sporangia were filamentous. The oogonia were subglobose, smooth, 16.04 ± 0.25 µm (n=50) in diameter, and developed on unbranched stalks. The antheridia were barrel shaped and clavate. Oospores were globose, aplerotic or nearly plerotic, measuring 6.62 ± 0.33 µm (n=50). These morphological characteristics were consistent with the description of Pythium spp. (van der Plaats-Niterink 1981). For molecular identification, the internal transcribed spacer (ITS) region of rDNA and cytochrome c oxidase subunit I (Cox I) of a representative isolate, GF-3, were amplified and sequenced (GenBank accession nos. OR228424 for ITS and OR237556 for Cox I) using universal primers ITS1/ITS4 (White et al. 1990) and FM58/FM66, respectively (Villa et al. 2006). BLASTn analysis revealed that the ITS and Cox I sequences were 99.76 % (838/840 bp) and 99.85% (671/672 bp) identical to the corresponding sequences of P. dissotocum strain CBS 166.68 (AY598634.2) and UM982 (MT981147.1), respectively. A neighbor-joining phylogenetic tree based on the Cox I sequence showed that GF-3 grouped in the P. dissotocum branch. Based on morphological and molecular characteristics, GF-3 was identified to be P. dissotocum. For pathogenicity testing, four- to five-leaf-old healthy potted tobacco seedlings of the Yunyan 87 cultivar were inoculated with a zoospore suspension (1 × 105 zoospores/ml), which was induced on V8-juice medium. The zoospore suspension was introduced into the soil around plant roots and 10 mL of inoculum was used for each plant. In the control group, plants were inoculated with sterilized water. All of the treated plants were kept in humid chambers at 26°C under a 12 h/12 h photoperiod. The pathogenicity assays were performed twice, with each treatment having three replicated plants. After 5 days, tobacco seedlings inoculated with P. dissotocum showed symptoms resembling that observed in the field. However, the control plants remained healthy. Pythium dissotocum was re-isolated from the infected plants and identified by morphological and molecular methods, thus confirming Koch's postulates. Pythium dissotocum has been reported causing root rot in other plants, including hydroponic lettuce (McGehee et al. 2018) and spinach (Huo et al. 2020). Also, many Pythium species have recently been recovered from float-bed tobacco transplant production greenhouses (Zhang et al. 2022). However, to our knowledge, this is the first report of root rot on tobacco caused by P. dissotocum in China. Since this disease could greatly affect tobacco seedling establishment in the field, appropriate management strategies need to be developed to reduce further losses in tobacco planting fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-07-23-1303-PDN | DOI Listing |
Plant Dis
January 2025
Universidad de Chile, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronomicas, Casilla 1004, Santiago, Chile, 8820000;
Walnut (Juglans regia L.) is the primary nut tree cultivated in Chile, covering 44.626 ha.
View Article and Find Full Text PDFPlant Dis
January 2025
Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China;
Astragalus mongholicus is a perennial Chinese medicinal herb in the family Leguminosae widely cultivated in China. In September 2023, A. mongholicus plants in a field in Weiyuan County, Gansu Province, showed symptoms of circular or irregular brown, sunken and necrotic lesions, multiple lesions coalesced, and brown longitudinal cracks in the roots.
View Article and Find Full Text PDFPlant Dis
January 2025
Hebei Academy of Agricultural and Forestry Sciences, Plant Protection Institute, 437 Dongguan Street, Baoding, Hebei, China, 071000.
Strawberry () is an important economic crop in Hebei, China. In May 2023, root rot was observed in strawberry plantations (cultivar 'Benihoppe') in Shijiazhuang (37°57'23″N, 115°16'34″E), Hebei, China. The incidence of the disease reached up to 30% in the field.
View Article and Find Full Text PDFEnviron Microbiome
January 2025
Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, China.
Continuous monocultures alter the composition and function of root-associated microbiota, and thus compromise crop health and productivity. In comparison, little is known about how leaf-associated microbiota respond to continuous monocultures. Here, we profiled root and leaf-associated microbiota of peanut plants under monocropping and rotation conditions.
View Article and Find Full Text PDFPlant Dis
January 2025
The University of Melbourne, Faculty of Science, School of Agriculture, Food and Ecosystem Sciences, Parkville, Victoria, Australia;
In Australia, pyrethrum (Tanacetum cinerariifolium) cultivation provides a significant portion of the global supply of natural insecticidal pyrethrins. However, crown and root rots, along with stunted plant growth and plant loss during winter, are significant issues affecting certain sites. Several isolates of the Fusarium oxysporum species complex (FOSC) have been identified as causal agents of crown and root rot in pyrethrum, highlighting these as key pathogens contributing to this decline.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!