Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Oxidative stress plays an important role in the health impacts of both outdoor fine particulate air pollution (PM 2.5 ) and thermal stress. However, it is not clear how the oxidative potential of PM 2.5 may influence the acute cardiovascular effects of temperature.
Methods: We conducted a case-crossover study of hospitalization for cardiovascular events in 35 cities across Canada during the summer months (July-September) between 2016 and 2018. We collected three different metrics of PM 2.5 oxidative potential each month in each location. We estimated associations between lag-0 daily temperature (per 5ºC) and hospitalization for all cardiovascular (n = 44,876) and ischemic heart disease (n = 14,034) events across strata of monthly PM 2.5 oxidative potential using conditional logistical models adjusting for potential time-varying confounders.
Results: Overall, associations between lag-0 temperature and acute cardiovascular events tended to be stronger when outdoor PM 2.5 oxidative potential was higher. For example, when glutathione-related oxidative potential (OP GSH ) was in the highest tertile, the odds ratio (OR) for all cardiovascular events was 1.040 (95% confidence intervals [CI] = 1.004, 1.074) compared with 0.980 (95% CI = 0.943, 1.018) when OP GSH was in the lowest tertile. We observed a greater difference for ischemic heart disease events, particularly for older subjects (age >70 years).
Conclusions: The acute cardiovascular health impacts of summer temperature variations may be greater when outdoor PM 2.5 oxidative potential is elevated. This may be particularly important for ischemic heart disease events.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/EDE.0000000000001651 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!