Heat Flow Guiding and Modulation by Kinks in a Silicon Nanoribbon.

Nano Lett

Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing 100871, People's Republic of China.

Published: October 2023

Tailoring heat flow in solids has profound implications for the innovation of functional thermal devices. However, the current methods face technological challenges related to system complexity, material stability, and operating temperature. In this study, we demonstrated efficient heat flow modulation in a single material without a phase transition, using a simple and entirely material-independent strategy, kinked nanostructure patterning, at near-ambient temperature. By carefully controlling the kink arm length and kink angle of the Si nanoribbons, we achieved a thermal conductivity modulation of up to ∼20%. Our theoretical modeling showed that this modulation results from the competing roles of phonon backscattering and open view channels on heat transport. We also build a regime map based on the existence of an open view channel and provide concrete design guidelines for thermal conductivity modulation considering the kink angle and arm length. This study opens up new opportunities for efficient heat flow manipulation through nanostructure patterning.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.3c01795DOI Listing

Publication Analysis

Top Keywords

heat flow
16
efficient heat
8
nanostructure patterning
8
arm length
8
kink angle
8
thermal conductivity
8
conductivity modulation
8
open view
8
heat
5
modulation
5

Similar Publications

Trace measurement of aerosol chemical composition in workplace atmospheres requires the development of high-throughput aerosol collectors that are compact, hand-portable, and can be operated using personal pumps. We describe the design and characterization of a compact, high flow, Turbulent-mixing Condensation Aerosol-in-Liquid Concentrator (TCALC) that allows direct collection of aerosols as liquid suspensions, for off-line chemical, biological, or microscopy analysis. The TCALC unit, measuring approximately 12 × 16 × 18 cm, operates at an aerosol sample flowrate of up to 10 L min, using rapid mixing of a hot flow saturated with water vapor and a cold aerosol sample flow, thereby promoting condensational growth of aerosol particles.

View Article and Find Full Text PDF

During maritime operations, extreme events such as explosions, grounding, and seal failures can cause water ingress into lubricant compartments, forming oil-water emulsions that significantly affect the lubrication performance of ship stern bearings. Existing studies mainly focus on low water content, with limited exploration of the impact of high water content on lubrication performance. To address this gap, viscosity measurements of oil-water mixtures were conducted, and an emulsification viscosity equation applicable to varying water contents was derived.

View Article and Find Full Text PDF

This study investigates the use of multi-layered porous media (MLPM) to enhance thermal energy transfer within a counterflow double-pipe heat exchanger (DPHE). We conducted computational fluid dynamics (CFD) simulations on DPHEs featuring five distinct MLPM configurations, analyzed under both fully filled and partially filled conditions, alongside a conventional DPHE. The impact of various parameters such as porous layer arrangements, thickness, and flow Reynolds numbers on pressure drop, logarithmic mean temperature difference (LMTD), and performance evaluation criterion (PEC) was assessed.

View Article and Find Full Text PDF

This study is the application of a recurrent neural networks with Bayesian regularization optimizer (RNNs-BRO) to analyze the effect of various physical parameters on fluid velocity, temperature, and mass concentration profiles in the Darcy-Forchheimer flow of propylene glycol mixed with carbon nanotubes model across a stretched cylinder. This model has significant applications in thermal systems such as in heat exchangers, chemical processing, and medical cooling devices. The data-set of the proposed model has been generated with variation of various parameters such as, curvature parameter, inertia coefficient, Hartmann number, porosity parameter, Eckert number, Prandtl number, radiation parameter, activation energy variable, Schmidt number and reaction rate parameter for different scenarios.

View Article and Find Full Text PDF

Silencing miR-126-5p protects trabecular meshwork cells against chronic oxidative injury by upregulating HSPB8 to activate PI3K/AKT pathway.

J Mol Histol

December 2024

Department of Ophthalmology, First Affilliated Hospital, Heilongjiang University of Chinese Medicine, No.26 Heping Road, Xiangfang District, Harbin, 150000, China.

Chronic oxidative stress (COS) is related to the pathophysiology of the trabecular meshwork (TM) in glaucoma. MicroRNAs (miRNAs) have a key role in the oxidative stress-mediated glaucoma. This work investigated the function of miR-126-5p in human trabecular meshwork cells (TMCs) under chronic oxidative stress (COS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!