Urinary tract infections are widespread bacterial infections affecting millions of people annually, with being the most prevalent. Although phage therapy has recently gained interest as a promising alternative therapy for antibiotic-resistant bacteria, several studies have raised concerns regarding the evolution of phage resistance, making the therapy ineffective. In this study, we discover a novel coli myophage designated as Killian that targets strains, including the uropathogenic (UPEC) strain CFT073. It requires at least 20 minutes for 90% of its particles to adsorb to the host cells, undergoes subcellular activities for replication for 30 minutes, and eventually lyses the cells with a burst size of about 139 particles per cell. Additionally, Killian can withstand a wide variety of temperatures (4-50°C) and pHs (4-10). Genome analysis reveals that Killian's genome consists of 169,905 base pairs with 35.5% GC content, encoding 276 open reading frames; of these, 209 are functionally annotated with no undesirable genes detected, highlighting its potential as an antibiotic alternative against UPEC. However, after an 8-hour phage treatment at high multiplicities of infection, bacterial density continuously increases, indicating an onset of bacterial growth revival. Thus, the combination study between the phage and three different antibiotics, including amikacin, ciprofloxacin, and piperacillin, was performed and showed that certain pairs of phage and antibiotics exhibited synergistic interactions in suppressing the bacterial growth revival. These findings suggest that Killian-antibiotic combinations are effective in inhibiting the growth of UPEC. IMPORTANCE Phage therapy has recently been in the spotlight as a viable alternative therapy for bacterial infections. However, several studies have raised concerns about the emergence of phage resistance that occurs during treatment, making the therapy not much effective. Here, we present the discovery of a novel myophage that, by itself, can effectively kill the uropathogenic , but the emergence of bacterial growth revival was detected during the treatment. Phage and antibiotics are then combined to improve the efficiency of the phage in suppressing the bacterial re-growth. This research would pave the way for the future development of phage-antibiotic cocktails for the sustainable use of phages for therapeutic purposes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580823 | PMC |
http://dx.doi.org/10.1128/spectrum.00889-23 | DOI Listing |
Infect Chemother
December 2024
Department of Microbiology, Government Medical College, Srinagar, J&K, India.
Background: Wound infections significantly impact morbidity, mortality, and healthcare costs globally. The Kashmir Valley's unique geographical and climatic conditions, coupled with resource constraints and antibiotic misuse, complicate managing these infections effectively. This study aimed to identify predominant bacterial pathogens in wound infections at a tertiary care hospital in Kashmir, determine their antibiotic susceptibility profiles, and estimate the prevalence of multidrug-resistant (MDR) strains.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, Moscow, 111123, Russia.
Background: The infections of bacterial origin represent a significant problem to the public healthcare worldwide both in clinical and community settings. Recent decade was marked by limiting treatment options for bacterial infections due to growing antimicrobial resistance (AMR) acquired and transferred by various bacterial species, especially the ones causing healthcare-associated infections, which has become a dangerous issue noticed by the World Health Organization. Numerous reports shown that the spread of AMR is often driven by several species-specific lineages usually called the 'global clones of high risk'.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
The probiotic gut microbiome and its metabolites are pivotal in regulating host metabolism, inflammation, and immunity. Host genetics, colonization at birth, the host lifestyle, and exposure to diseases and drugs determine microbial composition. Dysbiosis and disruption of homeostasis in the beneficial microbiome have been reported to be involved in the tumorigenesis and progression of colorectal cancer (CRC).
View Article and Find Full Text PDFInt J Antimicrob Agents
January 2025
School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Drug Discovery, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China; University of Chinese Academy of Science, Beijing, China; Guangzhou National Laboratory, Guangzhou, China. Electronic address:
Mycobacterium abscessus (Mab) poses serious therapeutic challenges, largely due to its intrinsic resistance to many antibiotics. The development of targeted therapeutic strategies necessitates the identification of bacterial factors that contribute to its reduced susceptibility to antibiotics and/or to the killing by its host cells. In this study, we discovered that Mab strains with disrupted mtrA, mtrB or both, or a gene-edited mtrA encoding MtrA with Tyr102Cys mutation, exhibited highly increased sensitivity to various drugs compared to the wild-type Mab.
View Article and Find Full Text PDFInfect Chemother
December 2024
Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea Seoul, Korea.
Background: Healthcare-associated infections (HAI) caused by multidrug-resistant organisms have emerged as a significant global issue, posing substantial challenges to healthcare systems. Low- and intermediate-level disinfectants are extensively utilized for cleaning and disinfecting surfaces in hospitals to mitigate environmental transmission of HAI. Therefore, the need for more effective and environmentally safe disinfectants is increasing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!