A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep learning on electronic medical records identifies distinct subphenotypes of diabetic kidney disease driven by genetic variations in the pathway. | LitMetric

AI Article Synopsis

  • - Kidney disease is a major issue for diabetic patients, affecting about 50%, and predicting how the disease will progress has been tough due to its complexity and variability.
  • - Utilizing deep learning techniques, researchers analyzed electronic health records from 1,372 diabetic kidney disease patients, revealing two distinct patient clusters that show different risks for reaching end-stage kidney disease.
  • - A new genetic variant linked to kidney disease was found in a specific gene expressed in kidney cells, which disrupts cellular functions and stability, suggesting it could be a target for new treatments.

Article Abstract

Kidney disease affects 50% of all diabetic patients; however, prediction of disease progression has been challenging due to inherent disease heterogeneity. We use deep learning to identify novel genetic signatures prognostically associated with outcomes. Using autoencoders and unsupervised clustering of electronic health record data on 1,372 diabetic kidney disease patients, we establish two clusters with differential prevalence of end-stage kidney disease. Exome-wide associations identify a novel variant in a Rho guanine exchange factor specifically expressed in glomeruli. Overexpression of in human podocytes leads to impairments in focal adhesion architecture, cytoskeletal dynamics, cellular motility, and RhoA/Rac1 activation. Mutant GEF18 is resistant to ubiquitin mediated degradation leading to pathologically increased protein levels. Our findings uncover the first known disease-causing genetic variant that affects protein stability of a cytoskeletal regulator through impaired degradation, a potentially novel class of expression quantitative trait loci that can be therapeutically targeted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508814PMC
http://dx.doi.org/10.1101/2023.09.06.23295120DOI Listing

Publication Analysis

Top Keywords

kidney disease
16
deep learning
8
diabetic kidney
8
identify novel
8
disease
6
learning electronic
4
electronic medical
4
medical records
4
records identifies
4
identifies distinct
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: