Topologically driven linear magnetoresistance in helimagnetic FeP.

npj Quantum Inf

Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, USA.

Published: January 2021

The helimagnet FeP is part of a family of binary pnictide materials with the MnP-type structure, which share a nonsymmorphic crystal symmetry that preserves generic band structure characteristics through changes in elemental composition. It shows many similarities, including in its magnetic order, to isostructural CrAs and MnP, two compounds that are driven to superconductivity under applied pressure. Here we present a series of high magnetic field experiments on high-quality single crystals of FeP, showing that the resistance not only increases without saturation by up to several hundred times its zero-field value by 35 T, but that it also exhibits an anomalously linear field dependence over the entire range when the field is aligned precisely along the crystallographic c-axis. A close comparison of quantum oscillation frequencies to electronic structure calculations links this orientation to a semi-Dirac point in the band structure, which disperses linearly in a single direction in the plane perpendicular to field, a symmetry-protected feature of this entire material family. We show that the two striking features of magnetoresistance-large amplitude and linear field dependence-arise separately in this system, with the latter likely due to a combination of ordered magnetism and topological band structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510734PMC
http://dx.doi.org/10.1038/s41535-021-00337-2DOI Listing

Publication Analysis

Top Keywords

band structure
12
linear field
8
structure
5
field
5
topologically driven
4
driven linear
4
linear magnetoresistance
4
magnetoresistance helimagnetic
4
helimagnetic fep
4
fep helimagnet
4

Similar Publications

-Armchair graphene nanoribbons (nAGNRs) are promising components for next-generation nanoelectronics due to their controllable band gap, which depends on their width and edge structure. Using non-metal surfaces for fabricating nAGNRs gives access to reliable information on their electronic properties. We investigated the influence of light and iron adatoms on the debromination of 4,4''-dibromo--terphenyl precursors affording poly(-phenylene) (PPP as the narrowest GNR) wires through the Ullmann coupling reaction on a rutile TiO(110) surface, which we studied by scanning tunneling microscopy and X-ray photoemission spectroscopy.

View Article and Find Full Text PDF

The development of diverse microstructures has substantially contributed to recent progress in high-performance electromagnetic wave (EMW) absorption materials, providing a versatile platform for the modulation of absorption properties. Exploring multidimensional microstructures and developing tailored and gentle strategies for their precise optimization can substantially address the current challenges posed by relatively unclear underlying mechanisms. Here, a series of 2D/1D heterogeneous NiO@PPy composites featuring hollow hierarchical microstructures are successfully synthesized using a straightforward strategy combining sacrificial templating with chemical oxidative polymerization.

View Article and Find Full Text PDF

Tuning electronic and optical properties of 2D polymeric C by stacking two layers.

Nanoscale

January 2025

Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J.J.Thomson Avenue, Cambridge CB3 0HE, UK.

Benefiting from improved stability due to interlayer van der Waals interactions, few-layer fullerene networks are experimentally more accessible compared to monolayer polymeric C. However, there is a lack of systematic theoretical studies on the material properties of few-layer C networks. Here, we compare the structural, electronic and optical properties of bilayer and monolayer fullerene networks.

View Article and Find Full Text PDF

First-principles study of CO and HO adsorption on the anatase TiO(101) surface: effect of Au doping.

Phys Chem Chem Phys

January 2025

Shanxi Coal International Energy Group Co., Ltd., Taiyuan 030000, China.

Photocatalytic reduction of CO will play a major role in future energy and environmental crisis. To investigate the adsorption mechanisms of CO and HO molecules involved in the catalytic process on the surface of anatase titanium dioxide 101 (TiO(101)) and the influence of Au atom doping on their adsorption, first-principles density functional theory calculations were used. The results show that 1.

View Article and Find Full Text PDF

The spectrum of carbon monoxide is important for astrophysical media, such as planetary atmospheres, interstellar space, exoplanetary and stellar atmospheres; it also important in plasma physics, laser physics and combustion. Interpreting its spectral signature requires a deep and thorough understanding of its absorption and emission properties. A new accurate spectroscopic model for the ground and electronically-excited states of the CO molecule computed at the aug-cc-pV5Z CASSCF/MRCI+Q level is reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!