Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Computational hemodynamics models are becoming increasingly useful in the management and prognosis of complex, multiscale pathologies, including those attributed to the development of pulmonary vascular disease. However, diseases like pulmonary hypertension are heterogeneous, and affect both the proximal arteries and veins as well as the microcirculation. Simulation tools and the data used for model calibration are also inherently uncertain, requiring a full analysis of the sensitivity and uncertainty attributed to model inputs and outputs. Thus, this study quantifies model sensitivity and output uncertainty in a multiscale, pulse-wave propagation model of pulmonary hemodynamics. Our pulmonary circuit model consists of fifteen proximal arteries and twelve proximal veins, connected by a two-sided, structured tree model of the distal vasculature. We use polynomial chaos expansions to expedite the sensitivity and uncertainty quantification analyses and provide results for both the proximal and distal vasculature. Our analyses provide uncertainty in blood pressure, flow, and wave propagation phenomenon, as well as wall shear stress and cyclic stretch, both of which are important stimuli for endothelial cell mechanotransduction. We conclude that, while nearly all the parameters in our system have some influence on model predictions, the parameters describing the density of the microvascular beds have the largest effects on all simulated quantities in both the proximal and distal circulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508834 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!