Introduction: Dynamic contrast-enhanced (DCE) MRI has important clinical value for early detection, accurate staging, and therapeutic monitoring of cancers. However, conventional multi-phasic abdominal DCE-MRI has limited temporal resolution and provides qualitative or semi-quantitative assessments of tissue vascularity. In this study, the feasibility of retrospectively quantifying multi-phasic abdominal DCE-MRI by using pharmacokinetics-informed deep learning to improve temporal resolution was investigated.
Method: Forty-five subjects consisting of healthy controls, pancreatic ductal adenocarcinoma (PDAC), and chronic pancreatitis (CP) were imaged with a 2-s temporal-resolution quantitative DCE sequence, from which 30-s temporal-resolution multi-phasic DCE-MRI was synthesized based on clinical protocol. A pharmacokinetics-informed neural network was trained to improve the temporal resolution of the multi-phasic DCE before the quantification of pharmacokinetic parameters. Through ten-fold cross-validation, the agreement between pharmacokinetic parameters estimated from synthesized multi-phasic DCE after deep learning inference was assessed against reference parameters from the corresponding quantitative DCE-MRI images. The ability of the deep learning estimated parameters to differentiate abnormal from normal tissues was assessed as well.
Results: The pharmacokinetic parameters estimated after deep learning have a high level of agreement with the reference values. In the cross-validation, all three pharmacokinetic parameters (transfer constant , fractional extravascular extracellular volume , and rate constant ) achieved intraclass correlation coefficient and between 0.84-0.94, and low coefficients of variation (10.1%, 12.3%, and 5.6%, respectively) relative to the reference values. Significant differences were found between healthy pancreas, PDAC tumor and non-tumor, and CP pancreas.
Discussion: Retrospective quantification (RoQ) of clinical multi-phasic DCE-MRI is possible by deep learning. This technique has the potential to derive quantitative pharmacokinetic parameters from clinical multi-phasic DCE data for a more objective and precise assessment of cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507354 | PMC |
http://dx.doi.org/10.3389/fradi.2023.1168901 | DOI Listing |
J Am Med Inform Assoc
December 2024
AI for Health Institute, Washington University in St Louis, St Louis, MO 63130, United States.
Objective: Early detection of surgical complications allows for timely therapy and proactive risk mitigation. Machine learning (ML) can be leveraged to identify and predict patient risks for postoperative complications. We developed and validated the effectiveness of predicting postoperative complications using a novel surgical Variational Autoencoder (surgVAE) that uncovers intrinsic patterns via cross-task and cross-cohort presentation learning.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
The biobased production of chemicals is essential for advancing a sustainable chemical industry. 1,5-Pentanediol (1,5-PDO), a five-carbon diol with considerable industrial relevance, has shown limited microbial production efficiency until now. This study presents the development and optimization of a microbial system to produce 1,5-PDO from glucose in Corynebacterium glutamicum via the l-lysine-derived pathway.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
Digital PCR (dPCR) has transformed nucleic acid diagnostics by enabling the absolute quantification of rare mutations and target sequences. However, traditional dPCR detection methods, such as those involving flow cytometry and fluorescence imaging, may face challenges due to high costs, complexity, limited accuracy, and slow processing speeds. In this study, SAM-dPCR is introduced, a training-free open-source bioanalysis paradigm that offers swift and precise absolute quantification of biological samples.
View Article and Find Full Text PDFJ Med Eng Technol
December 2024
Department of Computer Engineering and Information Technology, Razi University, Kermanshah, Iran.
Nowadays, photoplethysmograph (PPG) technology is being used more often in smart devices and mobile phones due to advancements in information and communication technology in the health field, particularly in monitoring cardiac activities. Developing generative models to generate synthetic PPG signals requires overcoming challenges like data diversity and limited data available for training deep learning models. This paper proposes a generative model by adopting a genetic programming (GP) approach to generate increasingly diversified and accurate data using an initial PPG signal sample.
View Article and Find Full Text PDFActa Ophthalmol
December 2024
Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria.
Purpose: The relationship between retinal morphology, as assessed by optical coherence tomography (OCT), and retinal function in microperimetry (MP) has not been well studied, despite its increasing importance as an essential functional endpoint for clinical trials and emerging therapies in retinal diseases. Normative databases of healthy ageing eyes are largely missing from literature.
Methods: Healthy subjects above 50 years were examined using two MP devices, MP-3 (NIDEK) and MAIA (iCare).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!