Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The properties of water are vastly affected by its local environment or in other words the system in which water is present. There are many systems in which water is confined in pores of different sizes and shapes. We studied the system in which porous media consisted of quenched Lennard-Jones disks and water modelled as rose water which was allowed to move inside pores. Associative replica Ornstein-Zernike theory was used to calculate the properties of the system. The accuracy of the theory under different conditions was tested against Monte Carlo simulations. The advantage of the theory is that it is magnitudes faster than computer simulations. From pair distribution functions calculated with the theory, the effects of different conditions on the structure of the system was investigated. We also studied how different conditions such as fluid temperature, fluid density, matrix density and matrix particle size affect a fraction of bonded molecules, excess internal energy and isothermal compressibility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508880 | PMC |
http://dx.doi.org/10.1016/j.molliq.2022.120682 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!