Background/aims: The recommended treatment for uncomplicated crown fractures is bonding the fractured fragment or the fragment reattachment. A paucity was identified regarding the studies comparing the efficacy of micro-hybrid and nanohybrid composites in fragment reattachment. Hence, the present study aimed to evaluate and compare three materials for bonding of fragments rehydrated by humidification in teeth with uncomplicated crown fractures.

Material And Methods: Eighty mandibular bovine incisors with similar dimensions and free of any structural deformities were fractured similar to the technique followed in previous studies. Fracture was simulated, fragments, and stumps were coded, stumps were stored in artificial saliva and the fragments were dehydrated at room temperature and pressure. They were randomly assigned to Group-1 (no rehydration), Group-2 (rehydrated and bonded by flowable nanohybrid composite-3M Filtek Supreme Syringe Flowable Composite Resin-A2, Sao Paulo, Brazil), Group-3 (rehydrated and bonded by flowable micro-hybrid composite- Ruby Flow, InciDental, England, United Kingdom), and Group-4 (rehydrated and bonded by light-cured Glass-Ionomer-Cement-Voco Ionoseal, Cuxhaven, Germany). The samples were subjected to a universal testing machine to evaluate the force required to fracture the bonded fragments.

Results: The highest median value of the force required to fracture was recorded for Group 2 (208.4 N) followed by Group 3 (195.2). The force required to fracture the bonded fragments was lowest in Group 4 (67.2 N) which was lower than the negative control (131.4 N). The differences between the observations in Groups 2 and 3 were not found to be statistically significant.

Conclusion: The nano and micro-hybrid composites showed greater force required to fracture than fragments bonded by LC-GIC. Dehydrated fragments bonded using nanocomposites performed better than rehydrated fragments bonded by using LC-GIC.

Download full-text PDF

Source
http://dx.doi.org/10.1111/edt.12888DOI Listing

Publication Analysis

Top Keywords

force required
16
required fracture
16
fragment reattachment
12
uncomplicated crown
12
rehydrated bonded
12
fragments bonded
12
three materials
8
bonded
8
bonded flowable
8
fracture bonded
8

Similar Publications

Geometrically modulated contact forces enable hula hoop levitation.

Proc Natl Acad Sci U S A

January 2025

Applied Mathematics Laboratory, Courant Institute of Mathematical Sciences, Department of Mathematics, New York University, New York, NY 10012.

Mechanical systems with moving points of contact-including rolling, sliding, and impacts-are common in engineering applications and everyday experiences. The challenges in analyzing such systems are compounded when an object dynamically explores the complex surface shape of a moving structure, as arises in familiar but poorly understood contexts such as hula hooping. We study this activity as a unique form of mechanical levitation against gravity and identify the conditions required for the stable suspension of an object rolling around a gyrating body.

View Article and Find Full Text PDF

Deep conservation complemented by novelty and innovation in the insect eye ground plan.

Proc Natl Acad Sci U S A

January 2025

Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093.

A spectacular diversity of forms and features allow species to thrive in different environments, yet some structures remain relatively unchanged. Insect compound eyes are easily recognizable despite dramatic differences in visual abilities across species. It is unknown whether distant insect species use similar or different mechanisms to pattern their eyes or what types of genetic changes produce diversity of form and function.

View Article and Find Full Text PDF

Background: There is an increased prevalence of mental health problems in various population groups as a result of the COVID-19 pandemic and its consequences, especially regarding anxiety, stress, depression, fear, and sleep disturbances, require to be investigated longitudinally.

Objective: This study aimed to determine the impact that the COVID-19 pandemic had on the mental health of Nursing students, as well as to examine other associated factors such as anxiety, fear, sleep disturbances, and coping strategies.

Method: This systematic review and meta-analysis were designed following the PRISMA guidelines and were registered in PROSPERO with code CRD42024541904.

View Article and Find Full Text PDF

The controlled binding of proteins on nanoparticle surfaces remains a grand challenge required for many applications ranging from biomedical to energy storage. The difficulty in achieving this ability arises from the different functional groups of the biomolecule that can adsorb on the nanoparticle surface. While most proteins can only adopt a single structure, metamorphic proteins can access at least two different conformations, which presents intriguing opportunities to exploit such structural variations for binding to nanoparticles.

View Article and Find Full Text PDF

Understanding ferroelectric domain wall dynamics at the nanoscale across a broad range of timescales requires measuring domain wall position under different applied electric fields. The success of piezoresponse force microscopy (PFM) as a tool to apply local electric fields at different positions and imaging their changing position, together with the information obtained from associated switching spectroscopies has fueled numerous studies of the dynamics of ferroelectric domains to determine the impact of intrinsic parameters such as crystalline order, defects and pinning centers, as well as boundary conditions such as environment. However, the investigation of sub-coercive reversible domain wall vibrational modes requires the development of new tools that enable visualizing domain wall motion under varying applied fields with high temporal and spatial resolution while also accounting for spurious electrostatic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!