Objective: We aimed to compare the image quality and focal lesion detection ability of hepatobiliary phase (HBP) images obtained using compressed sensing (CS) and controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) in patients with liver cirrhosis.

Materials And Methods: We retrospectively included 244 gadoxetic acid-enhanced liver MRI from 244 patients with cirrhosis obtained by two HBP images using CS and CAIPIRINHA from July 2020 to December 2020. The optimized resolution and scan time for CS-HBP and CAIPIRINHA-HBP were 0.9 × 0.9 × 1.5 mm and 15 s and 1.3 × 1.3 × 3 mm and 16 s, respectively. We compared the image quality between the two sets of images in 244 patients and focal lesion (n = 294) analyses for 112 patients.

Results: CS-HBP showed comparable overall image quality (3.7 ± 0.9 vs. 3.6 ± 0.8, p = 0.680), superior liver edge sharpness (3.9 ± 0.6 vs. 3.6 ± 0.5, p < 0.001), and fewer respiratory motion artifacts (4.0 ± 0.7 vs. 3.8 ± 0.5, p < 0.001), but higher non-respiratory artifacts (3.4 ± 0.7 vs. 3.6 ± 0.6, p < 0.001) and subjective image noise (3.5 ± 0.8 vs. 3.6 ± 0.7, p = 0.014) than CAIPIRINHA-HBP. CS-HBP showed a higher signal-to-noise ratio in the liver than CAIPIRINHA-HBP (20.9 ± 9.0 vs. 18.9 ± 7.1, p = 0.008). The pooled sensitivity, specificity, and AUC were 90.0%, 77.5%, and 0.84 for CS-HBP and 73.5%, 82.4%, and 0.78 for CAIPIRINHA-HBP, respectively.

Conclusions: CS-HBP showed better focal lesion detection ability, comparable overall image quality, and fewer respiratory motion artifacts, but higher non-respiratory artifacts and noise compared to CAIPIRINHA-HBP. Thus, CS-HBP could be recommended for liver MRI in patients with cirrhosis to improve diagnostic performance.

Clinical Relevance Statement: Thin-slice CS-HBP may be useful for detecting sub-centimeter hepatocellular carcinoma in cirrhotic patients with Child-Pugh classification A while maintaining comparable subjective image quality.

Key Points: • Compared with controlled aliasing in parallel imaging results in higher acceleration, compressed sensing hepatobiliary phase yielded thinner slices and shorter scan time at a higher accelerating factor. • Compressed sensing hepatobiliary phase showed comparable overall image quality, superior liver edge sharpness, and fewer respiratory motion artifacts, but higher non-respiratory artifacts and subjective image noise than controlled aliasing in parallel imaging results in higher acceleration-hepatobiliary phase. • Compressed sensing hepatobiliary phase can detect sub-centimeter hepatocellular carcinoma in cirrhotic patients with Child-Pugh classification A.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00330-023-10226-wDOI Listing

Publication Analysis

Top Keywords

image quality
12
hepatobiliary phase
8
compressed sensing
8
sensing controlled
8
controlled aliasing
8
aliasing parallel
8
parallel imaging
8
imaging higher
8
higher acceleration
8
focal lesion
8

Similar Publications

Background: T thermometry is considered a straight method for the safety monitoring of patients with deep brain stimulation (DBS) electrodes against radiofrequency-induced heating during Magnetic Resonance Imaging (MRI), requiring different sequences and methods.

Objective: This study aimed to compare two T thermometry methods and two low specific absorption rate (SAR) imaging sequences in terms of the output image quality.

Material And Methods: In this experimental study, a gel phantom was prepared, resembling the brain tissue properties with a copper wire inside.

View Article and Find Full Text PDF

An Unsupervised Feature Extraction Method based on CLSTM-AE for Accurate P300 Classification in Brain-Computer Interface Systems.

J Biomed Phys Eng

December 2024

Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

Background: The P300 signal, an endogenous component of event-related potentials, is extracted from an electroencephalography signal and employed in Brain-computer Interface (BCI) devices.

Objective: The current study aimed to address challenges in extracting useful features from P300 components and detecting P300 through a hybrid unsupervised manner based on Convolutional Neural Network (CNN) and Long Short-term Memory (LSTM).

Material And Methods: In this cross-sectional study, CNN as a useful method for the P300 classification task emphasizes spatial characteristics of data.

View Article and Find Full Text PDF

Introduction: Factors contributing to individual differences in knee osteoarthritis remain elusive. Dispositional traits and socioeconomic status are independent predictors of mental and physical health, although significant variability remains. Dispositional traits serve as the biological interface for life experiences.

View Article and Find Full Text PDF

Objective: To optimize the automated radiosynthesis of the purinergic ion channel receptor 7 (P2X7R) imaging agent F-JNJ64413739 and evaluate its potential for brain imaging in osteoporotic model rats.

Methods: A more electron-deficient nitropyridine was employed as the labeling precursor to facilitate the F-labeling. The radiosynthesis was conducted on an AllinOne synthesis module, and followed by purification via high-performance liquid chromatography (HPLC).

View Article and Find Full Text PDF

Identification of key genes related to growth of largemouth bass () based on comprehensive transcriptome analysis.

Front Mol Biosci

December 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

Introduction: Largemouth bass is an economically important farmed freshwater fish species that has delicious meat, no intermuscular thorns, and rapid growth rates. However, the molecular regulatory mechanisms underlying the different growth and developmental stages of this fish have not been reported.

Methods: In this study, we performed histological and transcriptomic analyses on the brain and dorsal muscles of largemouth bass at different growth periods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!