Assessment of ForenSeq mtDNA Whole Genome Kit for forensic application.

Int J Legal Med

Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China.

Published: November 2023

Mitochondrial DNA (mtDNA) is an indispensable genetic marker in forensic genetics. The emergence and development of massively parallel sequencing (MPS) makes it possible to obtain complete mitochondrial genome sequences more quickly and accurately. The study evaluated the advantages and limitations of the ForenSeq mtDNA Whole Genome Kit in the practical application of forensic genetics by detecting human genomic DNA standards and thirty-three case samples. We used control DNA with different amount to determine sensitivity of the assay. Even when the input DNA is as low as 2.5 pg, most of the mitochondrial genome sequences could still be covered. For the detection of buccal swabs and aged case samples (bloodstains, bones, teeth), most samples could achieve complete coverage of mitochondrial genome. However, when ancient samples and hair samples without hair follicles were sequenced by the kit, it failed to obtain sequence information. In general, the ForenSeq mtDNA Whole Genome Kit has certain applicability to forensic low template and degradation samples, and these results provide the data basis for subsequent forensic applications of the assay. The overall detection process and subsequent analysis are easy to standardize, and it has certain application potential in forensic cases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00414-023-03084-0DOI Listing

Publication Analysis

Top Keywords

forenseq mtdna
12
mtdna genome
12
genome kit
12
mitochondrial genome
12
forensic genetics
8
genome sequences
8
case samples
8
samples hair
8
genome
6
forensic
6

Similar Publications

Evaluating genome-wide and targeted forensic sequencing approaches to kinship determination.

Forensic Sci Int Genet

January 2025

Department of Genetics, Genomics & Cancer Sciences, University of Leicester, University Road, Leicester, UK. Electronic address:

Kinship determination is a valuable tool in forensic genetics, with applications including familial searching, disaster victim identification, and investigative genetic genealogy. Conventional typing of small numbers of autosomal short tandem repeats (STRs) confidently identifies only first-degree relatives. Massively parallel sequencing (MPS) can access more STRs and resolve alleles identical by length but differing in sequence (isoalleles), which may increase the power of kinship estimation, particularly when combined with additional sequenced single nucleotide polymorphism (SNP) loci, as in the ForenSeq DNA Signature Prep kit.

View Article and Find Full Text PDF

An investigation of downstream processing methods for challenging skeletal samples.

Forensic Sci Int Genet

December 2024

Department of Forensic Science, College of Criminal Justice, Sam Houston State University, Huntsville, TX, USA.

While skeletal remains are known for their resilience and often serve as the final source of information for unidentified human remains (UHRs), the traditional downstream processing of these samples is challenging due to their low template nature, DNA degradation, and the presence of PCR inhibitors, typically resulting in limited probative information. To address this issue, advanced genotyping methods can be explored to retrieve additional genetic information from these challenging samples to maximize investigative leads. Therefore, this study investigated the effectiveness of three advanced genotyping methods and assessed their suitability with compromised skeletal samples: 1) targeted next generation sequencing (NGS) of both STRs and SNPs using the ForenSeq® DNA Signature Prep chemistry, 2) targeted NGS of SNPs using the ForenSeq® Kintelligence kit, and 3) SNP genotyping using a microarray via the Infinium Global Screening Array.

View Article and Find Full Text PDF

Assessment of ForenSeq mtDNA Whole Genome Kit for forensic application.

Int J Legal Med

November 2023

Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China.

Mitochondrial DNA (mtDNA) is an indispensable genetic marker in forensic genetics. The emergence and development of massively parallel sequencing (MPS) makes it possible to obtain complete mitochondrial genome sequences more quickly and accurately. The study evaluated the advantages and limitations of the ForenSeq mtDNA Whole Genome Kit in the practical application of forensic genetics by detecting human genomic DNA standards and thirty-three case samples.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) is an effective genetic marker in forensic practice, especially for aged bones and hair shafts. Detection of the whole mitochondrial genome (mtGenome) using traditional Sanger-type sequencing is laborious and time-consuming. Additionally, its ability to distinguish point heteroplasmy (PHP) and length heteroplasmy (LHP) is limited.

View Article and Find Full Text PDF

For human identification purposes, forensic genetics has primarily relied upon a core set of autosomal (and to a lesser extent Y chromosome) short tandem repeat (STR) markers that are enriched by amplification using the polymerase chain reaction (PCR) that are subsequently separated and detected using capillary electrophoresis (CE). While STR typing conducted in this manner is well-developed and robust, advances in molecular biology that have occurred over the last 15 years, in particular massively parallel sequencing (MPS) [1-7], offer certain advantages as compared to CE-based typing. First and foremost is the high throughput capacity of MPS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!