Chromatin in eukaryotes folds into a complex three-dimensional (3D) structure that is essential for controlling gene expression and cellular function and is dynamically regulated in biological processes. Studies on plant phosphorus signaling have concentrated on single genes and gene interactions. It is critical to expand the existing signaling pathway in terms of its 3D structure. In this study, low-Pi treatment led to greater chromatin volume. Furthermore, low-Pi stress increased the insulation score and the number of TAD-like domains, but the effects on the A/B compartment were not obvious. The methylation levels of target sites (hereafter as RdDM levels) peaked at specific TAD-like boundaries, whereas RdDM peak levels at conserved TAD-like boundaries shifted and decreased sharply. The distribution pattern of RdDM sites originating from the Helitron transposons matched that of genome-wide RdDM sites near TAD-like boundaries. RdDM pathway genes were upregulated in the middle or early stages and downregulated in the later stages under low-Pi conditions. The RdDM pathway mutant ddm1a showed increased tolerance to low-Pi stress, with shortened and thickened roots contributing to higher Pi uptake from the shallow soil layer. ChIP-seq results revealed that ZmDDM1A could bind to Pi- and root development-related genes. Strong associations were found between interacting genes in significantly different chromatin-interaction regions and root traits. These findings not only expand the mechanisms by which plants respond to low-Pi stress through the RdDM pathway but also offer a crucial framework for the analysis of biological issues using 3D genomics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.16468 | DOI Listing |
BMC Genomics
December 2024
Department of Biological Sciences, Seoul National University, Seoul, Korea.
Background: Plants possess a high potential for somatic cell reprogramming, enabling the transition from differentiated tissue to pluripotent callus, followed by the formation of de novo shoots during plant regeneration. Despite extensive studies on the molecular network and key genetic factors involved in this process, the underlying epigenetic landscape remains incompletely understood.
Results: Here, we explored the dynamics of the methylome and transcriptome during the two-step plant regeneration process.
Open Biol
November 2024
Department of Biology, University of Oxford, Oxford OX1 2JD, UK.
RNA-directed DNA methylation (RdDM) is a plant-specific de novo methylation pathway that is responsible for maintenance of asymmetric methylation (CHH, H = A, T or G) in euchromatin. Loci with CHH methylation produce 24 nucleotide (nt) short interfering (si) RNAs. These siRNAs direct additional CHH methylation to the locus, maintaining methylation states through DNA replication.
View Article and Find Full Text PDFPlants (Basel)
October 2024
Department of Plant Science, McGill University, 21111 Rue Lakeshore, Montreal, QC H9X 3V9, Canada.
Pre-harvest sprouting (PHS) is a complex abiotic stress caused by multiple exogenous and endogenous variables that results in random but significant quality and yield loss at the terminal crop stage in more than half of the wheat-producing areas of the world. Systematic research over more than five decades suggests that addressing this challenge requires tools beyond the traditional genetic manipulation approach. Previous molecular studies indicate a possible role of epigenetics in the regulation of seed dormancy and PHS in crops, especially through RNA-directed DNA methylation (RdDM) pathways mediated by Argonaute (AGO) proteins.
View Article and Find Full Text PDFNew Phytol
January 2025
Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
The epigenetic process of RNA-directed DNA methylation (RdDM) regulates the expression of genes and transposons. However, little is known about the involvement of RdDM in the response of maize (Zea mays) to salt stress. Here, we isolated a salt-sensitive maize mutant and cloned the underlying gene, which encodes KOW DOMAIN-CONTAINING TRANSCRIPTION FACTOR1 (KTF1), an essential component of the RdDM pathway.
View Article and Find Full Text PDFNat Commun
September 2024
National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!