Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, nano-scale hydroxyapatite (HAP) powder was successfully synthesized from waste eggshells and combined with Lysinibacillus cavernae CR-2 to form bio-microcapsules, which facilitated the enhanced removal of Cr(VI) from wastewater. The effects of various parameters, such as bio-microcapsule dosage, HAP dosage, and initial Cr(VI) concentration on Cr(VI) removal, were investigated. Under different treatment conditions, the Cr(VI) removal followed the order of LC@HAP (90.95%) > LC (78.15%) > Free-LC (75.61%) > HAP (6.56%) > NM (0.23%) at the Cr(VI) initial concentration of 50 mg L. Relative to other reaction systems, the LC@HAP treatment exhibited a considerable decrease in total Cr content in the solution, with removal rates surpassing 70%. Additionally, the bio-microcapsules maintained significant biological activity after reacting with Cr(VI). Further characterization using SEM, FTIR, XPS, and XRD revealed that the Cr(VI) removal mechanisms by bio-microcapsules primarily involved biological reduction and HAP adsorption. The adsorption of Cr(III) by HAP predominantly occurred through electrostatic interactions and surface complexation, accompanied by an ion exchange process between Cr(III) and Ca(II). Hence, bio-microcapsules, created by combining L. cavernae with HAP, represent a promising emerging material for the enhanced removal of Cr(VI) pollutants from wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-29910-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!