modern wireless communication, the orbital angular momentum (OAM) beam is considered as an important technology. Some considerable efforts have been devoted to using this technology for channel capacity enhancement as much as possible. Nowadays, programmable metasurfaces provide an innovational scenario for generating multi-mode OAM beams due to their ability for digital electromagnetic waves modulation. However, the current programmable metasurfaces for generating OAM beams are typically based on reflective and transmissive modes, which have low aperture efficiency due to spillover and illumination effects. In this paper, a 1-bit programmable metasurface antenna is proposed with capability of producing highly efficient dynamic multi-mode OAM beams. The proposed structure is consisted of electronically reconfigurable meta-radiating elements loaded by PIN diodes to generate two-phase states of electric field. The designed Field Programmable Gate Array (FPGA) can assign a code sequence of 0 or 1 to the metasurface antenna in real-time to generate multi-mode OAM beams. Hence, a dynamical surface is obtained by switching PIN diodes to change the phase distribution on the surface. To verify the concept, the metasurface antenna is fabricated and measured with different OAM beam states, which are in agreement with the full-wave simulations, properly. The designed structure introduces a capable multi-mode OAM alternative for high throughput mm-wave communications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511630 | PMC |
http://dx.doi.org/10.1038/s41598-023-42691-0 | DOI Listing |
Sci Rep
January 2025
Department of Electrical Engineering, Iran University of Science and Technology, Tehran, 16846-1314, Iran.
The holographic technique is one of the simplest methods for designing antennas based on metasurface. This paper presents a spoof surface plasmon polariton (SSPP) leaky-wave antenna (LWA) based on the concept of impedance modulated metasurfaces by the anisotropic holographic technique. Instead of parasitic elements, anisotropic SSPP elements are exploited to achieve radiation with circular polarization.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Communications Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
A core dielectric cylindrical rod wrapped in a dielectric circular pipe whose outer surface is enclosed by a helical conducting strip grating that is skewed along the axial direction is herein analyzed using the asymptotic strip boundary conditions along with classical vector potential analysis. Targeted for use as a cylindrical holographic antenna, the resultant field solutions facilitate the aperture integration of the equivalent cylindrical surface currents to obtain the radiated far fields. As each rod section of a certain skew angle exhibits a distinct modal attribute; this topology allows for the distribution of the cylindrical surface impedance via the effective refractive index to be modulated, as in gradient-index (GRIN) materials.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Key Laboratory of Near-Range RF Sensing ICs and Microsystems (NJUST), Ministry of Education, School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Frequency-selective surfaces (FSSs) have attracted great attention owing to their unique feature to manipulate transmission performance over the frequency domain. In this work, a filtering antenna-filtering antenna (FA-FA) FSS with a wide passband and double-side sharp roll-off characteristics is presented by inter-using the filtering antenna and receiving-transmitting metasurface methods. First, a dual-polarized filtering antenna element was designed by employing a parasitic band-stop structure with an L-probe feed.
View Article and Find Full Text PDFNano Lett
January 2025
Second Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
Conducting polymers have emerged as promising active materials for metasurfaces due to their electrically tunable states and large refractive index modulation. However, existing approaches are often limited to infrared operation or single-polymer systems, restricting their versatility. In this Letter, we present organic metasurfaces featuring dual conducting polymers, polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT), to achieve contrasting dynamic optical responses at visible frequencies.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China.
Vanadium dioxide (VO) exhibits exceptional phase transition characteristics that enable dynamic manipulation of electromagnetic wave. In this study, a novel design of bilayer isotropic metasurface is introduced. It leverages insulating-to-metallic phase transition of VO to enable broadband holography for terahertz wave.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!