Understanding the brain functioning is essential for governing brain processes with the aim of managing pathological network dysfunctions. Due to the morphological and biochemical complexity of the central nervous system, the development of general models with predictive power must start from in vitro brain network engineering. In the present work, we realized a micro-electrode array (MEA)-based in vitro brain network and studied its emerging dynamical properties. We obtained four-neuron-clusters (4N) assemblies by plating rat embryo cortical neurons on 60-electrode MEA with cross-shaped polymeric masks and compared the emerging dynamics with those of sister single networks (1N). Both 1N and 4N assemblies exhibited spontaneous electrical activity characterized by spiking and bursting signals up to global activation by means of network bursts. Data revealed distinct patterns of network activity with differences between 1 and 4N. Rhythmic network bursts and dominant initiator clusters suggested pacemaker activities in both assembly types, but the propagation of activation sequences was statistically influenced by the assembly topology. We proved that this rhythmic activity was ivabradine sensitive, suggesting the involvement of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and propagated across the real clusters of 4N, or corresponding virtual clusters of 1N, with dominant initiator clusters, and nonrandom cluster activation sequences. The occurrence of nonrandom series of identical activation sequences in 4N revealed processes possibly ascribable to neuroplasticity. Hence, our multi-network dissociated cortical assemblies suggest the relevance of pacemaker neurons as essential elements for generating brain network electrophysiological patterns; indeed, such evidence should be considered in the development of computational models for envisaging network behavior both in physiological and pathological conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511538PMC
http://dx.doi.org/10.1038/s41598-023-42168-0DOI Listing

Publication Analysis

Top Keywords

brain network
16
activation sequences
12
network
9
vitro brain
8
network bursts
8
dominant initiator
8
initiator clusters
8
brain
6
clusters
5
multiple neuron
4

Similar Publications

Purpose: This study examined the occurrence and MRI characteristics of perinatal arterial ischemic stroke (PAIS) in children with cerebral palsy (CP) and suspected term hypoxic-ischemic injury (HII).

Methods: A retrospective review of brain MRI scans was conducted on children with CP and suspected term HII in South Africa.

Results: Out of 1620 children with CP included in the study, 15 (0.

View Article and Find Full Text PDF

Among hornbill birds, the critically endangered helmeted hornbill (Rhinoplax vigil) is notable for its casque (a bulbous beak protrusion) being filled with trabeculae and fronted by a very thick keratin layer. Casque function is debated but appears central to aerial jousting, where birds (typically males) collide casques at high speeds in a mid-flight display that is audible for more than 100 m. We characterized the structural relationship between the skull and casque anatomy using X-ray microtomography and quantitative trabecular network analysis to examine how the casque sustains extreme impact.

View Article and Find Full Text PDF

Excitatory-inhibitory homeostasis and bifurcation control in the Wilson-Cowan model of cortical dynamics.

PLoS Comput Biol

January 2025

Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands.

Although the primary function of excitatory-inhibitory (E-I) homeostasis is the maintenance of mean firing rates, the conjugation of multiple homeostatic mechanisms is thought to be pivotal to ensuring edge-of-bifurcation dynamics in cortical circuits. However, computational studies on E-I homeostasis have focused solely on the plasticity of inhibition, neglecting the impact of different modes of E-I homeostasis on cortical dynamics. Therefore, we investigate how the diverse mechanisms of E-I homeostasis employed by cortical networks shape oscillations and edge-of-bifurcation dynamics.

View Article and Find Full Text PDF

Using deep learning to shorten the acquisition time of brain MRI in acute ischemic stroke: Synthetic T2W images generated from b0 images.

PLoS One

January 2025

Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

Objective: This study aimed to assess the feasibility of the deep learning in generating T2 weighted (T2W) images from diffusion-weighted imaging b0 images.

Materials And Methods: This retrospective study included 53 patients who underwent head magnetic resonance imaging between September 1 and September 4, 2023. Each b0 image was matched with a corresponding T2-weighted image.

View Article and Find Full Text PDF

Aberrant Cortical Morphological Networks in First-Episode Schizophrenia.

Schizophr Bull

January 2025

Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China.

Background And Hypothesis: Population-based morphological covariance networks are widely reported to be altered in schizophrenia. Individualized morphological brain network approaches have emerged recently. We hypothesize that individualized morphological brain networks are disrupted in schizophrenia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!