Chiral-at-Metal Racemization Unraveled for MX (a-chel) by means of a Computational Analysis of MoO (acnac).

Chemistry

Department of Chemical Sciences, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa.

Published: November 2023

Octahedral chiral-at-metal complexes MX (a-chel) (a-chel=asymmetric chelate) can rearrange their ligands by four mechanisms known as the Bailar (B), Ray-Dutt (RD), Conte-Hippler (CH), and Dhimba-Muller-Lammertsma (DML) twists. Racemization involves their interconnections, which were computed for MoO (acnac) (acnac=β-ketoiminate) using density functional theory at ωB97x-D with the 6-31G(d,p) and 6-311G(2d,p) basis sets and LANL2DZ for molybdenum. Racemizing the cis(NN) isomer, being the global energy minimum with trans oriented imine groups, is a three step process (DML-CH-DML) that requires 17.4 kcal/mol, while all three cis isomers (cis(NN), cis(NO), and cis(OO)) interconvert at ≤17.9 kcal/mol. The B and RD twists are energetically not competitive and neither are the trans isomers. The interconnection of all enantiomeric minima and transition structures is summarized in a graph that also visualizes valley ridge inflection points for two of the three CH twists. Geometrical features of the minima and twists are given. Lastly, the influence of N-substitution on the favored racemization pathway is evaluated. The present comprehensive study serves as a template for designing chiral-at-metal MX (a-chel) catalysts that may retain their chiral integrity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202302516DOI Listing

Publication Analysis

Top Keywords

moo acnac
8
chiral-at-metal racemization
4
racemization unraveled
4
unraveled a-chel
4
a-chel computational
4
computational analysis
4
analysis moo
4
acnac octahedral
4
octahedral chiral-at-metal
4
chiral-at-metal complexes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!