Indoor testing are performed to explore the charge induction law during the uniaxial compression fracture process of coal samples, and the charge time and frequency domain signals of coal samples with different primary fissures are analyzed in the paper. On-site monitoring of charge in different fissures distribution areas of underground coal tunnels, and the charge signals of different drillingdepths in coal seams are analyzed. The results show that the uniaxial compressive strength and elastic modulus of multi-fissured coal samples are less than those of less fissured coal samples, and the Poisson's ratio is greater than those of less fissured coal samples. The charge induction signal intensity during the fracture process of multi-fissured coal samples is relatively low, but it is concentrated at the low frequency of 0-50 Hz in the compacting elasticity stage. The charge signal intensity during the fracture process of coal samples with less fissure is relatively high, and the charge frequency during the reinforcement damage stage is concentrated at a low frequency of 0-50 Hz. Therefore, the sudden appearance of low-frequency charge signals is more suitable as effective precursor information for the instability and failure of less fissured coal bodies. The average charge intensity is small in the multi-fissured area with a drilling depth of 1-4 m in the coal seam, and the average charge intensity of the coal body with less fissures is larger in the 5-12 m region. The on-site charge monitoring results have good consistency with the indoor test results. This study has guiding significance in setting up a charge monitoring warning index of instability failure in different coal body fissures regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511527 | PMC |
http://dx.doi.org/10.1038/s41598-023-42100-6 | DOI Listing |
Sci Rep
January 2025
College of Mining Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi Province, China.
The influence of interface morphology is of great importance on the shear behavior of the cement mortar-coal composite structure (CCCS) widely distributed in underground mines. In the present research, both the macroscopic- and microscopic failure characteristics of the CCCS with variable interface sawtooth angles (i.e.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mechanical and Engineering, Liaoning Technical University, Fuxin, 123000, China.
As the depth of coal mining in China continues to increase, the fracturing of coal rock masses has an increasingly complex impact on the surrounding rock roadways. The majority of the mine's roadways run through coal rock masses with hard roofs and soft bottoms, which typically exhibit complex dynamic behaviour. To further research the mechanical behaviour and fracture evolution of coal rock masses under hard-roof and soft-floor conditions, the study is based on the majority of working faces in a mine, which have hard roofs and soft floors.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
Polycyclic aromatic compounds (PACs) are pervasive environmental contaminants derived from diverse sources including pyrogenic (e.g., combustion processes), petrogenic (e.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada.
Coal tar-related products as a source of polycyclic aromatic compounds (PACs) are particularly concerning due to high PAC concentrations and inadequate source management. Benzo[b]carbazole, a benzocarbazole isomer exclusively found in coal tar-derived products, acts as an ideal marker to distinguish coal tar sources from others, enabling more robust quantification of coal tar contributions to PACs. To evaluate the historical and recent contributions of coal tar-related sources to the levels of PACs in Lake Ontario and associated ecological risk, we analyzed 31 PACs and 3 BCBz isomers in surface sediments and a sediment core.
View Article and Find Full Text PDFSci Rep
January 2025
Guizhou Mining Safety Science Research Institute Co., Ltd, Guiyang, 550025, China.
To enhance the safety of coal mining operations and improve the efficiency of gas extraction, hydraulic flushing technology has been widely used in low permeability coal seams. This study aims to investigate the mechanism of hydraulic flushing by conducting experiments focusing on four aspects: sample strength, punching pressure, punching position and vibration direction. The results show that an increase in hydraulic flushing pressure leads to a deeper impact groove, whereas higher sample strength results in a shallower groove.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!