Affine transformations accelerate the training of physics-informed neural networks of a one-dimensional consolidation problem.

Sci Rep

Institute of Structural Mechanics and Dynamics in Aerospace Engineering, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Pfaffenwaldring 27, 70569, Stuttgart, Germany.

Published: September 2023

Physics-informed neural networks (PINNs) leverage data and knowledge about a problem. They provide a nonnumerical pathway to solving partial differential equations by expressing the field solution as an artificial neural network. This approach has been applied successfully to various types of differential equations. A major area of research on PINNs is the application to coupled partial differential equations in particular, and a general breakthrough is still lacking. In coupled equations, the optimization operates in a critical conflict between boundary conditions and the underlying equations, which often requires either many iterations or complex schemes to avoid trivial solutions and to achieve convergence. We provide empirical evidence for the mitigation of bad initial conditioning in PINNs for solving one-dimensional consolidation problems of porous media through the introduction of affine transformations after the classical output layer of artificial neural network architectures, effectively accelerating the training process. These affine physics-informed neural networks (AfPINNs) then produce nontrivial and accurate field solutions even in parameter spaces with diverging orders of magnitude. On average, AfPINNs show the ability to improve the [Formula: see text] relative error by [Formula: see text] after 25,000 epochs for a one-dimensional consolidation problem based on Biot's theory, and an average improvement by [Formula: see text] with a transfer approach to the theory of porous media.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511457PMC
http://dx.doi.org/10.1038/s41598-023-42141-xDOI Listing

Publication Analysis

Top Keywords

physics-informed neural
12
one-dimensional consolidation
12
differential equations
12
[formula text]
12
affine transformations
8
consolidation problem
8
partial differential
8
artificial neural
8
neural network
8
porous media
8

Similar Publications

: Accurate reconstruction of internal temperature fields from surface temperature data is critical for applications such as non-invasive thermal imaging, particularly in scenarios involving small temperature gradients, like those in the human body. : In this study, we employed 3D convolutional neural networks (CNNs) to predict internal temperature fields. The network's performance was evaluated under both ideal and non-ideal conditions, incorporating noise and background temperature variations.

View Article and Find Full Text PDF

The numerical solution of differential equations using machine learning-based approaches has gained significant popularity. Neural network-based discretization has emerged as a powerful tool for solving differential equations by parameterizing a set of functions. Various approaches, such as the deep Ritz method and physics-informed neural networks, have been developed for numerical solutions.

View Article and Find Full Text PDF

Physics informed neural networks have been gaining popularity due to their unique ability to incorporate physics laws into data-driven models, ensuring that the predictions are not only consistent with empirical data but also align with domain-specific knowledge in the form of physics equations. The integration of physics principles enables the method to require less data while maintaining the robustness of deep learning in modelling complex dynamical systems. However, current PINN frameworks are not sufficiently mature for real-world ODE systems, especially those with extreme multi-scale behavior such as mosquito population dynamical modelling.

View Article and Find Full Text PDF

Pinning down the accuracy of physics-informed neural networks under laminar and turbulent-like aortic blood flow conditions.

Comput Biol Med

December 2024

Department of Electrical, Computer and Biomedical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, Canada. Electronic address:

Background: Physics-informed neural networks (PINNs) are increasingly being used to model cardiovascular blood flow. The accuracy of PINNs is dependent on flow complexity and could deteriorate in the presence of highly-dynamical blood flow conditions, but the extent of this relationship is currently unknown. Therefore, we investigated the accuracy and performance of PINNs under a range of blood flow conditions, from laminar to turbulent-like flows.

View Article and Find Full Text PDF

The disease amyloid plaques, neurofibrillary tangles, synaptic dysfunction, and neuronal death gradually accumulate throughout Alzheimer's disease (AD), resulting in cognitive decline and functional disability. The challenges of dataset quality, interpretability, ethical integration, population variety, and picture standardization must be addressed using deep learning for the functional magnetic resonance imaging (MRI) classification of AD in order to guarantee a trustworthy and practical therapeutic application. In this manuscript Classifying AD using a finite basis physics neural network (CAD-FBPINN) is proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!