Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: The goal of the work described here was to develop and assess a deep learning-based model that could automatically segment anterior chamber angle (ACA) tissues; classify iris curvature (I-Curv), iris root insertion (IRI), and angle closure (AC); automatically locate scleral spur; and measure ACA parameters in ultrasound biomicroscopy (UBM) images.
Methods: A total of 11,006 UBM images were obtained from 1538 patients with primary angle-closure glaucoma who were admitted to the Eye Center of Renmin Hospital of Wuhan University (Wuhan, China) to develop an imaging database. The UNet++ network was used to segment ACA tissues automatically. In addition, two support vector machine (SVM) algorithms were developed to classify I-Curv and AC, and a logistic regression (LR) algorithm was developed to classify IRI. Meanwhile, an algorithm was developed to automatically locate the scleral spur and measure ACA parameters. An external data set of 1,658 images from Huangshi Aier Eye Hospital was used to evaluate the performance of the model under different conditions. An additional 439 images were collected to compare the performance of the model with experts.
Results: The model achieved accuracies of 95.2%, 88.9% and 85.6% in classification of AC, I-Curv and IRI, respectively. Compared with ophthalmologists, the model achieved an accuracy of 0.765 in classifying AC, I-Curv and IRI, indicating that its high accuracy was as high as that of the ophthalmologists (p > 0.05). The average relative errors (AREs) of ACA parameters were smaller than 15% in the internal data sets. Intraclass correlation coefficients (ICCs) of all the angle-related parameters were greater than 0.911. ICC values of all iris thickness parameters were greater than 0.884. The accurate measurement of ACA parameters partly depended on accurate localization of the scleral spur (p < 0.001).
Conclusion: The model could effectively and accurately evaluate the ACA automatically based on fully automated analysis of UBM images, and it can potentially be a promising tool to assist ophthalmologists. The present study suggested that the deep learning model can be extensively applied to the evaluation of ACA and AC-related biometric risk factors, and it may broaden the application of UBM imaging in the clinical research of primary angle-closure glaucoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultrasmedbio.2023.08.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!