Objective: A coupling bath of circulating, chilled, degassed water is essential to safe and precise acoustic transmittance during transcranial magnetic resonance-guided focused ultrasound (tMRgFUS) procedures, but the circulating water impairs the critical real-time magnetic resonance imaging (MRI). An iron-based coupling medium (IBCM) using iron oxide nanoparticles previously developed by our group increased the relaxivity of the coupling bath such that it appears to be invisible on MRI compared with degassed water. However, the nanoparticles also reduced the pressure threshold for cavitation. To address this concern for prefocal cavitation, our group recently developed an IBCM of electrosterically stabilized and aggregation-resistant poly(methacrylic acid)-coated iron oxide nanoparticles (PMAA-FeOX) with a similar capability to reduce the MR signal of degassed water. This study examines the effect of the PMAA-FeOX IBCM on the cavitation threshold.

Methods: Increasing concentrations of PMAA-FeOX nanoparticles in degassed, deionized water were placed at the focus of two different transducers to assess low and high duty-cycle pulsing parameters which are representative of two modes of focused ultrasound being investigated for tMRgFUS. Passive cavitation detection and high-speed optical imaging were used to measure cavitation threshold pressures.

Results: The mean cavitation threshold was determined in both cases to be indistinguishable from the degassed water control, between 6-8 MPa for high duty-cycle pulsing (CW) and between 25.5-26.5 MPa for very low duty-cycle pulsing.

Conclusion: The findings of this study indicate that an IBCM of PMAA-FeOX nanoparticles is a possible solution to reducing MRI interference from the coupling bath without increasing the risk of prefocal cavitation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591864PMC
http://dx.doi.org/10.1016/j.ultrasmedbio.2023.08.015DOI Listing

Publication Analysis

Top Keywords

degassed water
16
focused ultrasound
12
coupling bath
12
iron-based coupling
8
coupling medium
8
transcranial magnetic
8
magnetic resonance-guided
8
resonance-guided focused
8
iron oxide
8
oxide nanoparticles
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!