Intermediates Regulation via Electron-Deficient Cu Sites for Selective Nitrate-to-Ammonia Electroreduction.

Adv Mater

Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.

Published: November 2023

Ammonia (NH ), known as one of the fundamental raw materials for manufacturing commodities such as chemical fertilizers, dyes, ammunitions, pharmaceuticals, and textiles, exhibits a high hydrogen storage capacity of ≈17.75%. Electrochemical nitrate reduction (NO RR) to valuable ammonia at ambient conditions is a promising strategy to facilitate the artificial nitrogen cycle. Herein, copper-doped cobalt selenide nanosheets with selenium vacancies are reported as a robust and highly efficient electrocatalyst for the reduction of nitrate to ammonia, exhibiting a maximum Faradaic efficiency of ≈93.5% and an ammonia yield rate of 2360 µg h cm at -0.60 V versus reversible hydrogen electrode. The in situ spectroscopical and theoretical study demonstrates that the incorporation of Cu dopants and Se vacancies into cobalt selenide efficiently enhances the electron transfer from Cu to Co atoms via the bridging Se atoms, forming the electron-deficient structure at Cu sites to accelerate NO dissociation and stabilize the *NO intermediates, eventually achieving selective catalysis in the entire NO RR process to produce ammonia efficiently.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202303107DOI Listing

Publication Analysis

Top Keywords

cobalt selenide
8
ammonia
5
intermediates regulation
4
regulation electron-deficient
4
electron-deficient sites
4
sites selective
4
selective nitrate-to-ammonia
4
nitrate-to-ammonia electroreduction
4
electroreduction ammonia
4
ammonia fundamental
4

Similar Publications

Controlled synthesis of hierarchical flowerlike cobalt tin sulfide (SnCoS) is successfully obtained using the chelation of the biomolecule l-asparagine with cobalt-tin metal cations by a hydrothermal technique. l-asparagine plays a crucial role as an inducer and a good structure-directing activity. Subsequently, pine needle-shaped cobalt iron selenium (FeCoSe) is tightly deposited on the SnCoS surface to construct cobalt tin sulfide coated with cobalt iron selenide (FeCoSe@SnCoS) heterostructure, which has exposed more active sites and the most abundant channels for electron/ion transfer.

View Article and Find Full Text PDF

Designing ultrathin transition metal electrocatalysts with optimal surface chemistry state is crucial for oxygen evolution reaction (OER). However, the structure-dependent electrochemical performance and the underlying catalytic mechanisms are still not clearly distinguished. Herein, we synthesize ultrathin CoSe nanosheets (NSs) with subnanometer thickness by incorporating catalytically inactive selenium (Se) into ultrathin Co(OH), thereby switching the OER reaction pathway from adsorbate evolution mechanism (AEM) to oxide path mechanism (OPM).

View Article and Find Full Text PDF

Engineering Heterointerface to Synergistically Regulate Kinetics and Stress of Copper-Cobalt Selenide toward Reversible Magnesium/Lithium Hybrid Batteries.

Nano Lett

November 2024

Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China.

Metal chalcogenide-based cathodes are crucial for the development of rechargeable magnesium batteries, yet the strong electrostatic interactions of Mg result in slow ion transport and high polarization. The Mg/Li hybrid battery holds promise for enhancing the energy storage capability. Herein, we establish a system that utilizes (Co,Cu)Se/CoSe heterostructure grown on carbon cloth as the cathode and APC-LiCl as a dual-salt electrolyte to achieve high reversible capacity, enhanced cyclic stability, and impressive rate performance.

View Article and Find Full Text PDF

In Situ Self-Inflating-Modeled Giant-Vesicle-Like Quantum Dot Assembly for Biomimetic Artificial Photosynthesis.

ACS Nano

November 2024

Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.

The study of biomimetic self-assembly is crucial for scientists aiming to understand the origin of life and construct biomimetic functional structures. In our endeavor to create a biomimetic photosynthetic assembly, we discover a self-inflation behavior that drives the components, MPA-CdSe quantum dots (QDs) and a solid cationic polyelectrolyte, , to form a giant-vesicle-like (GVL) architecture, termed . The generation of osmotic pressure during the self-assembly of QDs onto swollen in water was found to cause this self-inflation process.

View Article and Find Full Text PDF

Slow reaction kinetics during redox reactions limits the utilization of the high theoretical energy density of lithium-oxygen batteries (LOBs). Vacancy engineering, a potential strategy for modulating active sites, is critical in the development of high performance catalysts. This study investigates cobalt vacancies in Mo-CoSe nanoparticles created by selenization of phosphomolybdic acid (POM) embedded into zeolitic imidazolate framework-67 (ZIF-67).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!