Characterization of heart disease in mucopolysaccharidosis type II mice.

Cardiovasc Pathol

Programa de Pós-Graduação em Ciências Biológicas: Fisiologia - UFRGS, Rua Ramiro Barcelos, 2600, Porto Alegre, CEP: 90035-003, RS, Brazil; Centro de Pesquisa Experimental- Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, CEP 90035-903, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular - UFRGS Av. Bento Gonçalves, 9500, Porto Alegre, CEP 91501970, RS, Brazil. Electronic address:

Published: September 2023

Mucopolysaccharidosis type II (MPSII) is a progressive lysosomal storage disease caused by mutations in the IDS gene, that leads to iduronate 2-sulfatase (IDS) enzyme deficiency. The enzyme catalyzes the first step of degradation of two glycosaminoglycans (GAGs), heparan sulfate (HS) and dermatan sulfate (DS). The consequences of MPSII are progressively harmful and can lead to death by cardiac failure. The aim of this study was to characterize the cardiovascular disease in MPSII mice. Thus, we evaluated the cardiovascular function of MPSII male mice at 6, 8, and 10 months of age, through functional, histological, and biochemical analyzes. Echocardiographic analyses showed a progressive loss in cardiac function, observed through parameters such as reduction in ejection fraction (46% in control versus 28% in MPS II at 10 months, P < .01) and fractional area change (31% versus 23%, P < .05). Similar results were found in parameters of vascular competence, obtained by echo Doppler. Both aortic dilatation and an increase in pulmonary resistance were observed at all time points in MPSII mice. The histological analyses showed an increase in the thickness of the heart valves (2-fold thicker than control values at 10 months). Biochemical analyzes confirmed GAG storage in these tissues, with a massive elevation of DS in the myocardium. Furthermore, an important increase in the activity of proteases such as cathepsin S and B (up to 5-fold control values) was found and could be related to the progressive loss of cardiac function observed in MPSII mice. In this work, we demonstrated that loss of cardiac function in MPSII mice started at 6 months of age, although its global cardiac capacity was still preserved at this time. Disease progressed at later time points leading to heart failure. The MPSII mice at later times reproduce many of the cardiovascular events found in patients with Hunter's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carpath.2023.107575DOI Listing

Publication Analysis

Top Keywords

mpsii mice
20
loss cardiac
12
cardiac function
12
mucopolysaccharidosis type
8
mpsii
8
function mpsii
8
months age
8
biochemical analyzes
8
progressive loss
8
function observed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!