As an important raw material for the synthesis of chemical and pharmaceutical, hazardous carcinogen p-chloronitrobenzene (p-CNB) has been widely found in high-salinity wastewater which need to be treated carefully. Due to the high-salinity shock on microorganisms, conventional microbial treatment technologies usually show poor effluent quality. This study initially investigated the p-CNB removal performance of microorganisms stimulated by 1.2 V low-voltage in high-salinity wastewater under facultative anaerobic conditions and further revealed the enhanced mechanisms. The results showed that the p-CNB removal kinetic parameter k in the electrostimulating microorganism reactor (EMR) increased by 104.37 % to 155.30 % compared to the microorganism reactor (MR) as the control group under the varying salinities (0-45 g/L NaCl). The secretion of extracellular polymeric substances (EPS) in halotolerant microorganisms mainly enhanced by 1.2 V voltage stimulation ranging from 0 g/L NaCl to 30 g/L NaCl. Protein concentration ratio of EMR to MR in loosely bound EPS achieved maximum value of 1.77 at the salinity of 15 g/L NaCl, and the same ratio in tightly bound EPS also peaked at 1.39 under the salinity of 30 g/L NaCl. At the salinity of 45 g/L NaCl, 1.2 V voltage stimulation mainly enhanced salt-in strategy of halotolerant microorganisms, and the intracellular Na and K concentration ratio of EMR to MR reached maximum and minimum values of 0.65 and 1.92, respectively. Furthermore, the results of microbial metagenomic and metatranscriptomic analysis showed the halotolerant microorganisms Pseudomonas_A and Nitratireductor with p-CNB removal ability were enriched significantly under 1.2 V voltage stimulation. And the gene expression of p-CNB removal, salt-in strategy and betaine transporter were enhanced under voltage stimulation at varying salinities. Our investigation provided a new solution which combined with 1.2 V voltage stimulation and halotolerant microorganisms for the treatment of high-salinity wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.167164 | DOI Listing |
J Hazard Mater
January 2025
State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China; China Shipping Environment Technology (Shanghai) Co., Ltd, Shanghai Ship and Shipping Research Institute, 600 Minsheng Road, Shanghai 200135, China. Electronic address:
Water Res
November 2024
College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, Hangzhou, Zhejiang 311300, China. Electronic address:
The consistent presence of p-chloronitrobenzene (p-CNB) in groundwater has raised concerns regarding its potential harm. In this study, we developed a biocathode-anode cascade system in a permeable reactive barrier (BACP), integrating biological electrochemical system (BES) with permeable reactive barrier (PRB), to address the degradation of p-CNB in the groundwater. BACP efficiently accelerated the formation of biofilms on both the anode and cathode using the polar periodical reversal method, proving more conducive to biofilm development.
View Article and Find Full Text PDFMembranes (Basel)
May 2024
College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China.
The membrane biofilm reactor (MBfR) is a novel wastewater treatment technology, garnering attention due to its high gas utilization rate and effective pollutant removal capability. This paper outlines the working mechanism, advantages, and disadvantages of MBfR, and the denitrification pathways, assessing the efficacy of MBfR in removing oxidized pollutants (sulfate (SO), perchlorate (ClO)), heavy metal ions (chromates (Cr(VI)), selenates (Se(VI))), and organic pollutants (tetracycline (TC), p-chloronitrobenzene (p-CNB)), and delves into the role of related microorganisms. Specifically, through the addition of nitrates (NO), this paper analyzes its impact on the removal efficiency of other pollutants and explores the changes in microbial communities.
View Article and Find Full Text PDFJ Hazard Mater
June 2024
Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 222100, China. Electronic address:
Sci Total Environ
December 2023
School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; College of Environment and Resources, Zhejiang A&F University, Hangzhou 310018, Zhejiang, China. Electronic address:
As an important raw material for the synthesis of chemical and pharmaceutical, hazardous carcinogen p-chloronitrobenzene (p-CNB) has been widely found in high-salinity wastewater which need to be treated carefully. Due to the high-salinity shock on microorganisms, conventional microbial treatment technologies usually show poor effluent quality. This study initially investigated the p-CNB removal performance of microorganisms stimulated by 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!