The ultrastructural nature of human oocytes' cytoplasmic abnormalities and the role of cytoskeleton dysfunction.

F S Sci

Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic. Electronic address:

Published: November 2023

Objective: To investigate the structural bases of human oocytes' cytoplasmic abnormalities and the causative mechanism of their emergence. Knowledge of an abnormal oocyte's intracellular organization is vital to establishing reliable criteria for clinical evaluation of oocyte morphology.

Design: Laboratory-based study on experimental material provided by a private assisted reproduction clinic.

Setting: University laboratory and imaging center.

Patients: A total of 105 women undergoing hormonal stimulation for in vitro fertilization (IVF) donated their spare oocytes for this study.

Interventions: Transmission electron microscopy (TEM) was used to analyze the fine morphology of 22 dysmorphic IVF oocytes exhibiting different types of cytoplasmic irregularities, namely, refractile bodies; centrally located cytoplasmic granularity (CLCG); smooth endoplasmic reticulum (SER) disc; and vacuoles. A total of 133 immature oocytes were exposed to cytoskeleton-targeting compounds or matured in control conditions, and their morphology was examined using fluorescent and electron microscopy.

Main Outcome Measures: The ultrastructural morphology of dysmorphic oocytes was analyzed. Drug-treated oocytes had their maturation efficiency, chromosome-microtubule configurations, and fine intracellular morphology examined.

Results: TEM revealed ultrastructural characteristics of common oocyte aberrations and indicated that excessive organelle clustering was the underlying cause of 2 of the studied morphotypes. Inhibition experiments showed that disruption of actin, not microtubules, allows for inordinate aggregation of subcellular structures, resembling the ultrastructural pattern seen in morphologically abnormal oocytes retrieved in IVF cycles. These results imply that actin serves as a regulator of organelle distribution during human oocyte maturation.

Conclusion: The ultrastructural analogy between dysmorphic oocytes and oocytes, in which actin network integrity was perturbed, suggests that dysfunction of the actin cytoskeleton might be implicated in generating common cytoplasmic aberrations. Knowledge of human oocytes' inner workings and the origin of morphological abnormalities is a step forward to a more objective oocyte quality assessment in IVF practice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xfss.2023.09.002DOI Listing

Publication Analysis

Top Keywords

human oocytes'
12
oocytes' cytoplasmic
8
cytoplasmic abnormalities
8
oocytes
8
morphology dysmorphic
8
dysmorphic oocytes
8
ultrastructural
5
cytoplasmic
5
ultrastructural nature
4
human
4

Similar Publications

Alternative splicing in the DBD linker region of p63 modulates binding to DNA and iASPP in vitro.

Cell Death Dis

January 2025

Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany.

The transcription factor p63 is expressed in many different isoforms as a result of differential promoter use and splicing. Some of these isoforms have very specific physiological functions in the development and maintenance of epithelial tissues and surveillance of genetic integrity in oocytes. The ASPP family of proteins is involved in modulating the transcriptional activity of the p53 protein family members, including p63.

View Article and Find Full Text PDF

The physiological and clinical importance of motile cilia in reproduction is well recognized, however, the specific role they play in transport through the oviduct and how ciliopathies lead to subfertility and infertility is still unclear. The contribution of cilia beating, fluid flow, and smooth muscle contraction to overall progressive transport within the oviduct remains under debate. Therefore, we investigated the role of cilia in the oviduct transport of preimplantation eggs and embryos using a combination of genetic and advanced imaging approaches.

View Article and Find Full Text PDF

Balancing choice and socioeconomic realities: analyzing behavioral and economic factors in social oocyte cryopreservation decisions.

Front Endocrinol (Lausanne)

January 2025

Department of Economics and Business Administration, Ariel University, Ariel, Israel.

Purpose: This research investigates the influence of personal income, the likelihood of pregnancy from cryopreserved oocytes, and the risk of infertility, on the decision-making process of women. The study employs the economic stated preference framework alongside the Theory of Planned Behavior in order to comprehend the process of decision-making.

Design/methodology/approach: The data had been collected from women between the ages of 18 and 65 via questionnaire employing conjoint analysis (CA).

View Article and Find Full Text PDF

Luteinizing hormone receptor deficiency in immature cumulus-oocyte complexes retrieved for assisted reproduction.

F S Sci

January 2025

Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. Electronic address:

This study investigated whether luteinizing hormone receptor (LHR) expression varies in the granulosa cells of individual follicles according to the maturation stage of the oocytes harvested for assisted reproductive technology (ART) treatment. We observed minimal to no LHR mRNA and protein expression in cumulus cells surrounding oocytes arrested in the germinal vesicle (GV) stage. Interestingly, their ability to mature was confirmed by rescue in vitro maturation, suggesting somatic cell LHR deficiency as a key factor for the retrieval of GV oocytes in ART procedures.

View Article and Find Full Text PDF

Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!