Construction and functional evaluation of oral long-acting insulin hydrogel microparticles based on physical and chemical double crosslinking.

Int J Biol Macromol

Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China.

Published: December 2023

The objective of this study was to enhance the convenience and effectiveness of diabetes treatment by developing hydrogel microparticles as an oral insulin delivery system, aiming to reduce the necessity for frequent treatments. The hydrogel microparticles were prepared with polysaccharides through a combination of physical and chemical crosslinking method, they achieved good results in insulin loading efficiency (70 %), insulin release efficiency (98 %) and sustained release time (>20 h). The effective transmembrane transport was validated using an intestinal epithelial cell model, which demonstrated a continuous hypoglycemic effect lasting from 6 to 26 h in a type 2 diabetes mouse model. Additionally, the relative bioavailability of insulin reached 30.14 ± 2.62 %, representing a significant breakthrough in the field of oral insulin delivery carriers. Furthermore, oral insulin hydrogel exhibited a substantial improvement in insulin resistance, organ damage, and diabetes-related complications stemming from hyperglycemia. These compelling findings underscore the potential of hydrogel microparticles as a cost-effective and valuable strategy for oral drug delivery in diabetes treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.126915DOI Listing

Publication Analysis

Top Keywords

hydrogel microparticles
16
oral insulin
12
insulin
8
insulin hydrogel
8
physical chemical
8
diabetes treatment
8
insulin delivery
8
oral
5
hydrogel
5
construction functional
4

Similar Publications

Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.

Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.

View Article and Find Full Text PDF

Diatom contained alginate-chitosan hydrogel beads with enhanced hydrogen bonds and ionic interactions for extended release of gibberellic acid.

Int J Biol Macromol

December 2024

AI Agri-Tech Research Center, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea. Electronic address:

Hydrogels in agriculture offer controlled release, however, face issues with rapid disintegration, swift release, and inability to protect active ingredients. To overcome this, the study presents a hydrogel delivery system that uses dopamine-functionalized nanoporous diatom (DE-PDA) microparticles entrapped in alginate and chitosan matrices to deliver plant growth hormone, gibberellic acid (GA) that suffers from instability, limiting its field application. Developed GA@hydrogel beads exhibited an encapsulation efficiency of 85.

View Article and Find Full Text PDF

Chitosan is a natural polymer that can degrade in the environment and support green chemistry. It displays superior biocompatibility, easy access, and easy modification due to the reactive amino groups to transform or improve the physical and chemical properties. Chitosan can be chemically modified to enhance its properties, such as water solubility and biological activity.

View Article and Find Full Text PDF

Hierarchical Collagen/Apatite Co-assembly for Injection of Mineralized Fibrillar Tissue Analogues.

ACS Biomater Sci Eng

December 2024

Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005 Paris, France.

Mineralized biological tissues rich in type I collagen (e.g., bone and dentin) exhibit complex anisotropic suprafibrillar organizations in which the organic and inorganic moieties are intimately coassembled over several length scales.

View Article and Find Full Text PDF

Enhancing stability, bioavailability and nutritional intervention effect of procyanidins using bio-based delivery systems: A review.

Int J Biol Macromol

December 2024

Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China. Electronic address:

Procyanidins (PCs), a kind of polyphenolic compound, have attracted extensive attention due to their strong antioxidant, anti-inflammatory and other activities. However, PCs are susceptible to complex micro-environments, resulting in low stability, poor target tissue delivery and bioavailability, which limits their biological effects. Therefore, it is urgent to find some suitable pathways to protect PCs, avoid their degradation, and maximize their health benefits in nutritional intervention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!