Ginseng is rich of polysaccharides, however, the evidence supporting polysaccharides to distinguish various ginseng species is rarely reported. Focusing on six root ginseng (e.g., Panax ginseng-PG, P. quinquefolius-PQ, P. notoginseng-PN, red ginseng-RG, P. japonicus-PJ, and P. japonicus var. major-PJM), the contained non-starch polysaccharides (NPs) were structurally characterized and compared by both the chemical and biological evaluation. Holistic fingerprinting at three levels (the NPs and the acid hydrolysates involving oligosaccharides and monosaccharides) utilized various chromatography methods, and the treatment of H9c2 cells with the NPs by OGD and HO-induced injury models was used to assess the protective effect. NPs from six Panax herbal medicines occupied about 20 % of the total polysaccharides, which were of the highest content in RG and the lowest in PN. NPs from six ginseng exhibited weak differentiations in the molecular weight distribution, while marker oligosaccharides were found to distinguish PN and RG from the others. Glc and GalA were more abundant in the NPs for PG and RG, respectively. NPs from PQ (100/200 μg/mL) showed significant cardiomyocyte protection effect by regulating the mitochondrial functions. This work further testifies the role of polysaccharides in quality control of herbal medicine, with new markers discovered beneficial to distinguish the ginseng.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.126994 | DOI Listing |
Cardiovasc Drugs Ther
January 2025
The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
Purpose: Reperfusion of the ischaemic heart is essential to limit myocardial infarction. However, reperfusion can cause cardiomyocyte hypercontracture. Recently, cardiac myosin-targeted inhibitors (CMIs), such as Mavacamten (MYK-461) and Aficamten (CK-274), have been developed to treat patients with cardiac hypercontractility.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
Sorting nexins (SNXs) as the key regulators of sorting cargo proteins are involved in diverse diseases. SNXs can form the specific reverse vesicle transport complex (SNXs-retromer) with vacuolar protein sortings (VPSs) to sort and modulate recovery and degradation of cargo proteins. Our previous study has shown that SNX3-retromer promotes both STAT3 activation and nuclear translocation in cardiomyocytes, suggesting that SNX3 might be a critical regulator in the heart.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
Background: FDA-approved carbonic anhydrase inhibitors (CAIs) have been shown to attenuate Aβ pathology, neurodegeneration, and cerebrovascular dysfunction in models of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA), suggesting a key role for CAs as a novel and previously unexplored target for AD therapy. Amyloid β accumulation severely impairs the cerebral neuro-signaling pathway with a progressive loss in neurotrophic factors (NTFs, i.e.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
Energy deprivation and metabolic rewiring of cardiomyocytes are widely recognized hallmarks of heart failure. Here, we report that HEY2 (a Hairy/Enhancer-of-split-related transcriptional repressor) is upregulated in hearts of patients with dilated cardiomyopathy. Induced Hey2 expression in zebrafish hearts or mammalian cardiomyocytes impairs mitochondrial respiration, accompanied by elevated ROS, resulting in cardiomyocyte apoptosis and heart failure.
View Article and Find Full Text PDFCardiovasc Drugs Ther
January 2025
State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China.
Purpose: To investigate the protective effect and mechanism of enhanced expression of endogenous macrophage migration inhibitory factor (MIF) on cardiac ischemia-reperfusion (I/R) injury.
Methods: A recombinant double-stranded adeno-associated virus serotype 9 with MIF or green fluorescent protein (GFP) genes (dsAAV9-MIF/GFP) was transduced into mice and neonatal rat ventricular myocytes (NRVMs). The models of cardiac 60 min ischemia and 24 h reperfusion and 12 h hypoxia/12 h reoxygenation (H/R) were established in mice and NRVMs, respectively.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!