Background: Gastric cancer (GC) ranks third for cancer deaths worldwide, and glycolysis is a hallmark of several cancers, including GC. TEAD4 plays a role in establishing an oncogenic cascade in cancers, including GC. Whether TEAD4 can influence the glycolysis of GC cells remains uncovered. Hence, this study attempted to investigate the impact on glycolysis of GC cells by TEAD4.
Methods: By using bioinformatics analysis, differentially expressed mRNAs were screened, and downstream regulatory genes were predicted. Expression levels of TEAD4 and PKMYT1 were assessed by qRT-PCR. The binding sites between TEAD4 and PKMYT1 were predicted by the JASPAR database, meanwhile their modulatory relationship was confirmed through dual-luciferase assay and chromatin Immunoprecipitation (ChIP). Cell viability and proliferation were assayed via CCK-8 and colony formation assays. Glycolysis was measured by assaying extracellular acidification rate, oxygen consumption rate, and production of pyruvic acid, lactate, citrate, and malate. Expression levels of proteins (HK-2 and PKM2) related to glycolysis were assessed by Western blot.
Results: TEAD4 was upregulated in GC tissues and cells. TEAD4 knockdown substantially repressed glycolysis and proliferation of GC cells. PKMYT1, the target gene downstream of TEAD4, was identified via bioinformatics prediction, and its expression was elevated in GC. Dual-luciferase and ChIP assay validated the targeted relationship between the promoter region of PKMYT1 and TEAD4. As revealed by rescue experiments, the knockdown of TEAD4 reversed the stimulative effect on GC cell glycolysis and proliferation by forced expression of PKMYT1.
Conclusion: TEAD4 activated PKMYT1 to facilitate the proliferation and glycolysis of GC cells. TEAD4 and PKMYT1 may be possible therapeutic targets for GC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mcp.2023.101932 | DOI Listing |
Cell Death Differ
January 2025
Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
Hyperactivation of the YAP/TEAD transcriptional complex in cancers facilitates the development of an immunosuppressive tumor microenvironment. Herein, we observed that the transcription factor SP1 physically interacts with and stabilizes the YAP/TEAD complex at regulatory genomic loci in colorectal cancer (CRC). In response to serum stimulation, PKCζ (protein kinase C ζ) was found to phosphorylate SP1 and enhance its interaction with TEAD4.
View Article and Find Full Text PDFMed Oncol
January 2025
Department of Medical Surgical Nursing, College of Nursing, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia.
CRC has the third-highest cancer incidence and death. Many human cancers, including colorectal cancer, are connected to abnormal signaling pathway gene expression. Many human malignancies include Hippo and Rap1 signaling.
View Article and Find Full Text PDFInt Immunopharmacol
February 2025
Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological Tumor, Zhengzhou, Henan Province, China. Electronic address:
Ovarian cancer is a malignancy gynecologic oncology with high incidence and high mortality rate. M2-like tumor-associated macrophages promote cancer cell migration and metastasis. Ovarian tumor family deubiquitinase 4 (OTUD4) belongs to deubiquitinating enzyme family.
View Article and Find Full Text PDFAnticancer Drugs
March 2025
The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing.
Wnt1-inducible signaling pathway protein 1 (WISP1) promotes breast cancer. The Hippo signaling pathway demonstrates a potential connection with WISP1, necessitating an exploration of their interaction. This study hypothesized that WISP1 boosts breast cancer by modulating the Hippo signaling pathway.
View Article and Find Full Text PDFOncol Res
December 2024
Department of Respiratory and Critical Care Medicine, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, 353006, China.
Background: Long noncoding RNA, LINC01106 exhibits high expression in lung adenocarcinoma (LUAD) tumor tissues, but its functional role and regulatory mechanism in LUAD cells remain unclear.
Methods: LINC01106 expression was analyzed in LUAD tissues and its functional impact on LUAD cells was assessed. LUAD cells were silenced with sh-LINC01106 and injected into nude mice to investigate tumor growth.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!