Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
. Two-dimensional antiscatter grids' (2D-ASGs) septal shadows and their impact on primary transmission play a critical role in cone-beam computed tomography (CBCT) image noise and artifact characteristics. Therefore, a numerical simulation platform was developed to evaluate the effect of 2D-ASG's primary transmission on image quality, as a function of grid geometry and CBCT system properties.. To study the effect of 2D-ASG's septal shadows on primary transmission and CBCT image quality, two new methods were introduced; one to simulate projection signal gradients in septal shadows, and the other to simulate septal shadow variations due to gantry flex. Signal gradients in septal shadows were simulated by generating a system point spread function that was directly extracted from projection images of 2D-ASG prototypes in experiments. Variations in septal shadows due to gantry flex were simulated by generating oversampled shadow profiles extracted from experiments. Subsequently, the effect of 2D-ASG's septal shadows on primary transmission and image quality was evaluated.For an apparent septal thickness of 0.15 mm, the primary transmission of 2D-ASG varied between 72%-90% for grid pitches 1-3 mm. In low-contrast phantoms, the effect of 2D-ASG's radiopaque footprint on information loss was subtle. At high spatial frequencies, information loss manifested itself as undersampling artifacts, however, its impact on image quality is subtle when compared to quantum noise. Effects of additive electronic noise and gantry flex induced ring artifacts on image quality varied as a function of grid pitch and septal thickness. Such artifacts were substantially less in lower resolution images.. The proposed simulation platform allowed successful evaluation of CBCT image quality variations as a function of 2D-ASG primary transmission properties and CBCT system characteristics. This platform can be potentially used for optimizing 2D-ASG design properties based on the imaging task and properties of the CBCT system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11031370 | PMC |
http://dx.doi.org/10.1088/2057-1976/acfb8a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!