Facilitating direct interspecies electron transfer in anaerobic digestion via speeding up transmembrane transport of electrons and CO reduction in methanogens by Na adjustment.

Waste Manag

Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.

Published: October 2023

The possibility of facilitating direct interspecies electron transfer (DIET) in anaerobic digestion with different concentrations of NaCl was explored. Additional NaCl at 2 or 4 g/L strengthened anaerobic digestion to resist the high-organic loading rate impacts, whereas the higher concentrations of NaCl (6 or 8 g/L) suppressed methanogenesis. Additional MgCl with the same ion strength as NaCl at 2 g/L had no effect on performances. Additional NaCl at 2 or 4 g/L dramatically increased the abundance of Methanosarcina species (20.7%/23.4% vs 8.6%) and stimulated the growth of Sphaerochaeta and Petrimonas species that could transfer electrons to the soluble Fe(III) or elemental sulfur. Electrochemical evidences showed that, additional NaCl at 2 or 4 g/L increased capacitances and decreased charge transfer resistances of Methanosarcina-dominant communities. Metagenomic evidences showed that, additional NaCl at 2 or 4 g/L increased the abundance of genes that encoded the type IV pilus assembly proteins (1.98E-04/1.87E-04 vs 1.85E-04) and cytochrome c-like proteins (5.51E-04/5.60E-04 vs 5.31E-04). In addition, additional NaCl at 2 or 4 g/L increased the abundance of genes for methanophenazine (MP)/MPH transformation (1.04E-05/1.24E-05 vs 8.06E-06) and CO reduction (1.64E-03/1.86E-03 vs 1.06E-03), suggesting a rapid transmembrane transport of electrons and CO reduction in methanogens. Both processes were closely associated with F/FH transformation that required ATP. Additional NaCl at 2 or 4 g/L increased the yield of ATP (256.0/249.3 vs 231.8 nmol/L) that might promote F/FH transformation in methanogens, which overcame the thermodynamic limitations of combining electrons with protons for the reduction of CO to methane and facilitated DIET.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2023.09.017DOI Listing

Publication Analysis

Top Keywords

additional nacl
24
nacl 4 g/l
24
4 g/l increased
16
anaerobic digestion
12
increased abundance
12
nacl
9
facilitating direct
8
direct interspecies
8
interspecies electron
8
electron transfer
8

Similar Publications

Effects of 60 Hz non-uniform electromagnetic fields (EMFs) on the tomato (cv. L-05) seed germination, photosynthesis, and seedling growth under salt stress and laboratory conditions were investigated. A previous trial investigated the impact of salt stress levels (0, 40, 60, 80, and 100 mM NaCl) on tomato seeds, and the 100 mM NaCl level was selected to study the effects of EMFs in attenuating salinity stress on germination, physiology, and growth of tomato seedlings.

View Article and Find Full Text PDF

A solar-powered electrocoagulation process with a novel CNT/silver nanowire coated basalt fabric cathode for effective oil/water separation: From fundamentals to application.

J Environ Manage

January 2025

Xinjiang Key Laboratory of Separation Material and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

Electrocoagulation (EC) has proven its high efficiency and environmental sustainability for treating several types of wastewaters. However, the primary drawbacks of the conventional EC process are the suitable electrode materials and the relatively high cost due to the requirement for electric energy. To overcome these practical challenges, this study investigated effective oil/water separation by a solar-powered electrocoagulation (SPEC) process using a novel highly conductive basalt fabric (BF) cathode.

View Article and Find Full Text PDF

Molecular mechanism of protein-lipid interactions in steamed egg gelation and deterioration: A quantitative proteomic study.

Int J Biol Macromol

January 2025

Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China. Electronic address:

Steamed egg (SE), a traditional egg dish, exhibits steaming time-dependent textural properties. This study investigated the molecular mechanisms underlying SE gel formation and deterioration through quantitative proteomics combined with physicochemical characterization. Results showed optimal gel formation at 11 min steaming, while prolonged steaming (23 min) led to gel cracking and sensory deterioration.

View Article and Find Full Text PDF

One-step high-pressure and high-temperature direct aqueous mineral carbonation of tailings derived from mining of Platinum Group Metals in South Africa requires a fundamental understanding of the reactivity of the most dominant mineral phases, i.e. pyroxene and plagioclase (66 wt.

View Article and Find Full Text PDF

Melatonin (MT) is a crucial hormone that controls and positively regulates plant growth under abiotic stress, but the biochemical and physiological processes of the combination of melatonin seed initiation and exogenous spray treatments and their effects on maize germination and seedling salt tolerance are not well understood. Consequently, in this research, we utilized the maize cultivars Zhengdan 958 (ZD958) and Demeiya 1 (DMY1), which are extensively marketed in northeastern China's high-latitude cold regions, to reveal the modulating effects of melatonin on maize salinity tolerance by determining the impacts of varying concentrations of melatonin on maize seedling growth characteristics, osmoregulation, antioxidant systems, and gene expression. The findings revealed that salt stress (100 mM NaCl) significantly inhibited maize seed germination and seedling development, which resulted in significant increases in the HO and O content and decreases in the antioxidant enzyme activity and photosynthetic pigment content in maize seedlings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!