Synthesis of dimpled polymer particles and polymer particles with protrusions - Past, present, and future.

Adv Colloid Interface Sci

Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland. Electronic address:

Published: October 2023

AI Article Synopsis

  • Emulsion polymerization techniques have allowed for exceptional control over the size, distribution, and composition of polymer particles, making them a standard in colloids.
  • Various advanced synthesis methods have been explored, particularly focusing on the creation of particles with unique shapes like dumbbell (protrusions) and dimpled (concavities) forms.
  • The paper reviews the synthesis, functionalization, and applications of these particles, highlighting the similarities in their preparation methods and aiming to encourage more widespread usage and development of better synthetic techniques.

Article Abstract

Since the development of emulsion polymerization techniques, polymer particles have become the epitome of standard colloids due to the exceptional control over size, size distribution, and composition the synthesis methods allow reaching. The exploration of different variations of the synthesis methods has led to the discovery of more advanced techniques, enabling control over their composition and shape. Many early investigations focused on forming particles with protrusions (with one protrusion, called dumbbell particles) and particles with concavities, also called dimpled particles. This paper reviews the literature covering the synthesis, functionalization, and applications of both types of particles. The focus has been on the rationalization of the various approaches used to prepare such particles and on the discussion of the mechanisms of formation not just from the experimental viewpoint but also from the standpoint of thermodynamics. The primary motivation to combine in a single review the preparation of both types of particles has been the observation of similarities among some of the methods developed to prepare dimpled particles, which sometimes include the formation of particles with protrusions and vice versa. The most common applications of these particles have been discussed as well. By looking at the different approaches developed in the literature under one general perspective, we hope to stimulate a more ample use of these particles and promote the development of even more effective synthetic protocols.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cis.2023.102998DOI Listing

Publication Analysis

Top Keywords

particles
14
polymer particles
12
particles protrusions
12
synthesis methods
8
dimpled particles
8
types particles
8
synthesis
4
synthesis dimpled
4
dimpled polymer
4
particles polymer
4

Similar Publications

The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.

View Article and Find Full Text PDF

Preserving brain health by minimizing microplastic output from resin histology.

J Histotechnol

January 2025

Mechanical Engineering, Orthopedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, CO, USA.

With an increasing concentration of microplastics (MPs) in every biome, laboratories with a focus on creating histology slides from resin-embedded specimens could be partially responsible for expanding the emission of microscopic resinous particles into the environment. With current research elucidating harmful health impacts from MPs, releasing them incautiously is arguably unethical and, in the near future, plausibly illegal. The Orthopedic Bioengineering Research Laboratory (OBRL) is in Colorado, a state known not only for its natural beauty but also for its increasing number of legislative amendments aimed at reducing plastic pollution.

View Article and Find Full Text PDF

Short Aromatic Blocks Enhance Styrene Conversion in Polymer Cubosome Formation via Polymerization-Induced Self-Assembly.

Macromol Rapid Commun

January 2025

School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China.

Polymer cubosomes (PCs) have garnered significant interest in the field of nanomaterials and nanotechnology due to their unique properties and potential applications. However, the fabrication of PCs remains challenging. Polymerization-induced self-assembly (PISA) is recognized as an efficient method for producing a variety of polymer particles, including PCs.

View Article and Find Full Text PDF

Large-scale gene-environment interaction (GxE) discovery efforts often involve analytical compromises for the sake of data harmonization and statistical power. Refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C).

View Article and Find Full Text PDF

3D Printing of a Self-Healing, Bioactive, and Dual-Cross-Linked Polysaccharide-Based Composite Hydrogel as a Scaffold for Bone Tissue Engineering.

ACS Appl Bio Mater

January 2025

Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.

Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!