Silicon dioxide nanoparticles were synthesized and disposable screen-printed electrodes were modified with these nanoparticles to electrochemically detect the interaction between DNA and patulin, a mycotoxin. Firstly, the synthesized silicon dioxide nanoparticles were chemically characterized by X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Microscopic characterization of the nanoparticles was performed by Transmission Electron Microscopy (TEM) and Energy-dispersive X-ray spectroscopy (EDX). The surface of the silicon dioxide nanoparticle-modified screen-printed electrode was characterized by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). SiNP modification resulted in a 2-fold increase in surface area and a 2.3-fold enhancement in the signal. The detection limit (LOD) for the electrochemical patulin determination was calculated as 1.15 µg/mL, and the linear concentration range was found to be 3.2-20 µg/mL. The mode of interaction between patulin and dsDNA was determined through a molecular docking study. After the interaction between patulin and dsDNA, approximately 86 % and 23 % decreases were observed in patulin and guanine oxidation signals, respectively. The S % value for patulin was calculated by utilizing the decrease in the guanine signal after the interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2023.115713 | DOI Listing |
PLoS One
January 2025
Lecturer College of Civil and Traffic Engineering, Henan University of Urban Construction, Ping Dingshan, China.
Moisture content profoundly influences the engineering properties of expansive soil, a critical consideration in various geotechnical applications. This study delves into the intricate relationship between water content and the physical properties of bentonite, a key constituent of expansive soil. Through a comprehensive analysis encompassing fundamental physical properties, rheological characteristics, permeability behavior, and microscopic features, we elucidate the complex interplay between water content and bentonite behavior.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China.
Membrane distillation (MD) efficiently desalinizes and treats high-salinity water as well as addresses the challenges in handling concentrated brines and wastewater. However, silica scaling impeded the effectiveness of MD for treating hypersaline water and wastewater. Herein, the effects of humic acid (HA) on silica scaling behavior during MD are systematically investigated.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, India.
The prevalence and death due to cancer have been rising over the past few decades, and eliminating tumour cells without sacrificing healthy cells remains a difficult task. Due to the low specificity and solubility of drug molecules, patients often require high dosages to achieve the desired therapeutic effects. Silica nanoparticles (SiNPs) can effectively deliver therapeutic agents to targeted sites in the body, addressing these challenges.
View Article and Find Full Text PDFDrug Deliv
December 2025
College of Pharmacy, Xinxiang Medical University, Xinxiang, China.
Silicosis represents a formidable occupational lung pathology precipitated by the pulmonary assimilation of respirable crystalline silica particulates. This condition engenders a cascade of cellular oxidative stress via the activation of bioavailable silica, culminating in the generation of reactive oxygen species (ROS). Such oxidative mechanisms lead to irrevocable pulmonary impairment.
View Article and Find Full Text PDFExtracorporeal Membrane Oxygenation (ECMO) serves as a crucial intervention for patients with severe pulmonary dysfunction by facilitating oxygenation and carbon dioxide removal. While traditional ECMO systems are effective, their large priming volumes and significant blood-contacting surface areas can lead to complications, particularly in neonates and pediatric patients. Microfluidic ECMO systems offer a promising alternative by miniaturizing the ECMO technology, reducing blood volume requirements, and minimizing device surface area to improve safety and efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!