Numerous recent advances have been made in therapeutic approaches toward acute myeloid leukemia (AML). Since 2017, we have seen eleven novel Food & Drug Administration (FDA)-approved medications for AML, all of which extend beyond the classical cytarabine-based cytostatic chemotherapy. In the recent two decades, the role of immune surveillance in AML has been intensively investigated. The power of one's own innate and adaptive immunity has been harnessed pharmacologically toward the goal of clearance of AML cells. Specifically, pre-clinical studies have shown great promise for antibodies that disinhibit T cells and macrophages by blocking checkpoint receptors within the immunologic synapse, thereby resulting in the elimination of AML cells. Anti-CD33 CAR-T therapies and anti-CD3/CD123 bispecific antibodies have also exhibited encouraging results in pre-clinical and early clinical studies. However, despite these translational efforts, we currently have no immune-based therapies for AML on the market, with the exception of gemtuzumab ozogamicin. In this focused review, we discuss molecular target validation and the most relevant clinical updates for immune-based experimental therapeutics including anti-CD47 monoclonal antibodies, CAR-T therapies, and bispecific T cell engagers. We highlight barriers to the clinical translation of these therapies in AML, and we propose solutions to optimize the manufacturing and delivery of the most novel immune-based therapies in the pipeline.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10947503 | PMC |
http://dx.doi.org/10.1016/j.leukres.2023.107388 | DOI Listing |
Clin Hematol Int
January 2025
Service d'Hématologie Clinique et Thérapie Cellulaire Hôpital Saint-Antoine.
Individuals with chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL) have a high risk of developing other malignancies (OMs). The development of OMs may be associated with the advanced age of CLL/SLL patients, presence of a tumor-promoting microenvironment, immune alterations inherent to CLL/SLL, or chemotherapy. Importantly, the occurrence of OMs following frontline fludarabine, cyclophosphamide and rituximab (FCR) treatment is associated with a reduction in the overall survival (OS).
View Article and Find Full Text PDFAcute myeloid leukemia (AML) that is relapsed and/or refractory post-allogeneic hematopoietic cell transplantation (HCT) is usually fatal. In a prior study, we demonstrated that AML relapse in high-risk patients was prevented by post-HCT immunotherapy with Epstein-Barr virus (EBV)-specific donor CD8 T cells engineered to express a high-affinity Wilms Tumor Antigen 1 (WT1)-specific T-cell receptor (TTCR- C4). However, in the present study, infusion of EBV- or Cytomegalovirus (CMV)-specific T did not clearly improve outcomes in fifteen patients with active disease post-HCT.
View Article and Find Full Text PDFEur J Haematol
January 2025
Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy.
FLT3 mutations are among the most common genetic alterations in acute myeloid leukemia (AML) and are associated with poor prognosis. Significant advancements have been made in developing FLT3 inhibitors (FLT3Is), such as quizartinib, which have improved treatment outcomes in both newly diagnosed and relapsed/refractory AML. Resistance to FLT3Is remains a major clinical challenge, driven by diverse mechanisms including FLT3 point mutations, cellular escape pathways, and the influence of the bone marrow microenvironment.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Hematology, Qilu Hospital of Shandong University, No.117, West of Wenhua Road, Jinan, Shandong, 250012, People's Republic of China.
Background: Drug resistance and immune escape continue to contribute to poor prognosis in AML. Increasing evidence suggests that exosomes play a crucial role in AML immune microenvironment.
Methods: Sanger sequencing, RNase R and fluorescence in situ hybridization were performed to confirm the existence of circ_0006896.
Funct Integr Genomics
January 2025
Intelligent OMICS Limited, Nottingham, United Kingdom.
Gene‒gene interactions play pivotal roles in disease pathogenesis and are fundamental in the development of targeted therapeutics, particularly through the elucidation of oncogenic gene drivers in cancer. The systematic analysis of pathways and gene interactions is critical in the drug discovery process for various cancer subtypes. SPAG5, known for its role in spindle formation during cell division, has been identified as an oncogene in several cancers, although its specific impact on AML remains underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!