The harm of VOCs emitted from industries to surrounding atmospheric environment and human health was well known and had received continuous attention. In order to improve the quality of urban atmospheric environment and the living environment of urban residents, a large number of original urban industries had been relocated to economically underdeveloped suburbs, which has significantly deteriorated the atmospheric environment in these areas and brought potential health risks to local vulnerable residents, which is actually an unfair manifestation under the background of economic development and ecological civilization construction. There were many residents near industrial parks, but there was a significant lack of VOCs monitoring equipment and data. At present, the time resolution of the most commonly used in situ method was seriously insufficient, and it was unable to quantify the diffusion/transport process of VOCs. It was urgent to have effective detection methods for industrial VOCs plume concentration and diffusion/transport process. In this study, we proposed a hyperspectral imaging technology, which can realize long-term continuous imaging monitoring on plume concentrations of formaldehyde (HCHO), glyoxal (CHOCHO) and benzaldehyde (CHCHO) and their corresponding diffusion processes. The deviation between the imaging and in situ sampling concentrations in the outlet was 4-19 %. The spatial resolution of this technique reached meter level, and the temporal resolution of one pixel was better than 20 s. In this study, we carried out hyperspectral imaging of aldehyde VOCs for a chemical facility, a petrochemical facility and an industrial park containing various types of enterprises in the Yangtze River Delta. The maximum observed concentration of HCHO was 120.44 ± 12.14 ug/m with the emission flux of 39.27 ± 3.97 g/h, which was emitted from a petrochemical facility in Shanghai. A diffusion/transport model was established, and we found that the spatial distribution of HCHO, CHOCHO and CHCHO for the chemical facility case in Shanghai were all mainly along the southeast-northwest direction during one year. The health risk assessment emphasized that residents within 10 km north of the outlet of the chemical facility in Shanghai should pay more attention to the health risks caused by industrial HCHO emissions. More systematically and comprehensively hyperspectral imaging of VOCs emissions for different types of enterprises and different processes were expected to performed to greatly promote the establishment of a dynamic emission inventory and an effective health risk evaluation system in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.132573DOI Listing

Publication Analysis

Top Keywords

hyperspectral imaging
16
health risk
12
atmospheric environment
12
chemical facility
12
health risks
8
diffusion/transport process
8
petrochemical facility
8
types enterprises
8
facility shanghai
8
vocs
7

Similar Publications

Efficacy of Segmentation for Hyperspectral Target Detection.

Sensors (Basel)

January 2025

Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer Sheva blvd 1, Beer-Sheva 84105, Israel.

Algorithms for detecting point targets in hyperspectral imaging commonly employ the spectral inverse covariance matrix to whiten inherent image noise. Since data cubes often lack stationarity, segmentation appears to be an attractive preprocessing operation. Surprisingly, the literature reports both successful and unsuccessful segmentation cases, with no clear explanations for these divergent outcomes.

View Article and Find Full Text PDF

Search of Reflectance Indices for Estimating Photosynthetic Activity of Wheat Plants Under Drought Stress.

Plants (Basel)

December 2024

Department of Biophysics, National Research Lobachevsky, State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia.

Global climate change and the associated increasing impact of droughts on crops challenges researchers to rapidly assess plant health on a large scale. Photosynthetic activity is one of the key physiological parameters related to future crop yield. The present study focuses on the search for reflectance parameters for rapid screening of wheat genotypes with respect to photosynthetic activity under drought conditions.

View Article and Find Full Text PDF

Superoxide dismutase (SOD) plays an important role to respond in the defence against damage when tomato leaves are under different types of adversity stresses. This work employed microhyperspectral imaging (MHSI) and visible near-infrared (Vis-NIR) hyperspectral imaging (HSI) technologies to predict tomato leaf SOD activity. The macroscopic model of SOD activity in tomato leaves was constructed using the convolutional neural network in conjunction with the long and short-term temporal memory (CNN-LSTM) technique.

View Article and Find Full Text PDF

Integrating genomic, hyperspectral imaging (HSI), and environmental data enhances wheat yield predictions, with HSI providing detailed spectral insights for predicting complex grain yield (GY) traits. Incorporating HSI data with single nucleotide polymorphic markers (SNPs) resulted in a substantial improvement in predictive ability compared to the conventional genomic prediction models. Over the course of several years, the prediction ability varied due to diverse weather conditions.

View Article and Find Full Text PDF

Introduction: Crocin-I, a water-soluble carotenoid pigment, is an important coloring constituent in gardenia fruit. It has wide application in various industries such as food, medicine, chemical industry, and so on. So the content of crocin-I plays a key role in evaluating the quality of gardenia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!