Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Wear of sliding contacts causes device failure and energy costs; however, the microscopic principle in activating wear of the interfaces under stress is still open. Here, the typical nanoscale wear, in the case of silicon against silicon dioxide, is investigated by single-asperity wear experiments and density functional theory calculations. The tests demonstrate that the wear rate of silicon in ambient air increases exponentially with stress and does not obey classical Archard's law. Series calculations of atomistic wear reactions generally reveal that the mechanical stress linearly drives the electron transfer to activate the sequential formation and rupture of interfacial bonds in the atomistic wear process. The atomistic wear model is thus resolved by combining the present stress-driven electron transfer model with Maxwell-Boltzmann statistics. This work may advance electronic insights into the law of nanoscale wear for understanding and controlling wear and manufacturing of material surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.3c01714 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!