A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting hospitalizations for patients with chronic kidney disease. | LitMetric

Predicting hospitalizations for patients with chronic kidney disease.

Am J Manag Care

Davita, Inc, 825 S 8th St, Ste 300, Minneapolis, MN 55404. Email:

Published: September 2023

AI Article Synopsis

  • Patients with chronic kidney disease (CKD) face a higher risk of hospital admissions, leading to increased healthcare costs and poorer health outcomes, making it crucial to identify those at greatest risk.
  • A retrospective study analyzed Medicare data from 50,000 CKD patients to create a predictive model for all-cause hospitalizations within 90 days.
  • The resulting gradient-boosting algorithm showed good discrimination accuracy (AUC of 0.73) and can assist clinicians in managing CKD patients by identifying those at higher hospitalization risk.

Article Abstract

Objectives: Patients with chronic kidney disease (CKD) are at higher risk of being admitted to the hospital than the general population. Hospitalizations in patients with CKD are associated with higher medical costs and increased morbidity and mortality. Identification of patients with CKD who are at greatest risk of hospitalization may hold promise to improve clinical outcomes and enable judicious allocation of health care resources.

Study Design: Retrospective, observational cohort study.

Methods: Medicare Part A and Part B claims from calendar years 2017 and 2018 from 50,000 unique patients with a diagnosis of stage 3 to 5 CKD were used for this study. Data were split into training (n = 40,000) and test (n = 10,000) sets. A variety of model types were built to predict all-cause hospitalization within 90 days.

Results: The final model was a gradient-boosting machine with 399 input terms. The model demonstrated good ability to discriminate (area under the curve [AUC] for the receiver operating characteristic curve = 0.73), which was stable when tested in the test set (AUC = 0.73). The positive predictive value in the test set was 0.306, 0.240, and 0.216 at the 10%, 20%, and 30% thresholds, respectively. The sensitivity in the test set was 0.288, 0.453, and 0.609 at the 10%, 20%, and 30% thresholds, respectively.

Conclusions: We developed an algorithm that uses medical claims to identify Medicare patients with CKD stages 3 to 5 who are at highest risk of being hospitalized in the near term. This algorithm could be used as a decision support tool for clinical programs focusing on management of patient populations with CKD.

Download full-text PDF

Source
http://dx.doi.org/10.37765/ajmc.2023.89428DOI Listing

Publication Analysis

Top Keywords

patients ckd
12
test set
12
hospitalizations patients
8
patients chronic
8
chronic kidney
8
kidney disease
8
10% 20%
8
20% 30%
8
30% thresholds
8
patients
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: