Density functional theory (DFT) is a significant computational tool that has substantially influenced chemistry, physics, and materials science. DFT necessitates parametrized approximation for determining an expected value. Hence, to predict the properties of a given molecule using DFT, appropriate parameters of the functional should be set for each molecule. Herein, we optimize the parameters of range-separated functionals (LC-BLYP and CAM-B3LYP) via Bayesian optimization (BO) to satisfy Koopmans' theorem. Our results demonstrate the effectiveness of the BO in optimizing functional parameters. Particularly, Koopmans' theorem-compliant LC-BLYP (KTLC-BLYP) shows results comparable to the experimental UV-absorption values. Furthermore, we prepared an optimized parameter dataset of KTLC-BLYP for over 3000 molecules through BO for satisfying Koopmans' theorem. We have developed a machine learning model on this dataset to predict the parameters of the LC-BLYP functional for a given molecule. The prediction model automatically predicts the appropriate parameters for a given molecule and calculates the corresponding values. The approach in this paper would be useful to develop new functionals and to update the previously developed functionals.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.3c00764DOI Listing

Publication Analysis

Top Keywords

koopmans' theorem-compliant
8
density functional
8
appropriate parameters
8
koopmans' theorem
8
functional
5
parameters
5
koopmans'
4
theorem-compliant long-range
4
long-range corrected
4
corrected ktlc
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!