Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Artificial muscles are promising in soft exoskeletons, locomotion robots, and operation machines. However, their performance in contraction ratio, output force, and dynamic response is often imbalanced and limited by materials, structures, or actuation principles. We present lightweight, high-contraction ratio, high-output force, and positive pressure-driven X-crossing pneumatic artificial muscles (X-PAMs). Unlike PAMs, our X-PAMs harness the X-crossing mechanism to directly convert linear motion along the actuator axis, achieving an unprecedented 92.9% contraction ratio and an output force of 207.9 Newtons per kilogram per kilopascal with excellent dynamic properties, such as strain rate (1603.0% per second), specific power (5.7 kilowatts per kilogram), and work density (842.9 kilojoules per meter cubed). These properties can overcome the slow actuation of conventional PAMs, providing robotic elbow, jumping robot, and lightweight gripper with fast, powerful performance. The robust design of X-PAMs withstands extreme environments, including high-temperature, underwater, and long-duration actuation, while being scalable to parallel, asymmetric, and ring-shaped configurations for potential applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511197 | PMC |
http://dx.doi.org/10.1126/sciadv.adi7133 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!