AI Article Synopsis

  • Human activities that introduce chemical pollutants into the environment can significantly alter microbial communities, potentially leading to increased antibiotic resistance, particularly through mechanisms like horizontal gene transfer.
  • A study comparing metagenomes from polluted and unpolluted environments revealed that polluted areas had higher levels of antibiotic-resistance genes (ARGs) and specific mobile genetic elements, suggesting pollution enhances the prevalence of these resistance traits.
  • The findings indicate that various types of pollution, especially from petroleum, contribute to the proliferation of multidrug resistance among bacteria, posing a serious public health concern linked to the ongoing global issue of antimicrobial resistance.

Article Abstract

Many human activities contaminate terrestrial and aquatic environments with numerous chemical pollutants that not only directly alter the environment but also affect microbial communities in ways that are potentially concerning to human health, such as selecting for the spread of antibiotic-resistance genes (ARGs) through horizontal gene transfer. In the present study, metagenomes available in the public domain from polluted (with antibiotics, with petroleum, with metal mining, or with coal-mining effluents) and unpolluted terrestrial and aquatic environments were compared to examine whether pollution has influenced the abundance and composition of ARGs and mobile elements, with specific focus on IS26 and class 1 integrons (1). When aggregated together, polluted environments had a greater relative abundance of ARGs than unpolluted environments and a greater relative abundance of IS26 and 1. In general, chemical pollution, notably with petroleum, was associated with an increase in the prevalence of ARGs linked to multidrug efflux pumps. Included in the suite of efflux pumps were , , , and that are polyspecific and whose substrate ranges include multiple classes of critically important antibiotics. Also, in some instances, β-lactam resistance (TEM181 and OXA-541) genes increased, and genes associated with rifampicin resistance (RNA polymerases subunits and ) decreased in relative abundance. This meta-analysis suggests that different types of chemical pollution can enrich populations that carry efflux pump systems associated with resistance to multiple classes of medically critical antibiotics.IMPORTANCEThe United Nations has identified chemical pollution as being one of the three greatest threats to environmental health, through which the evolution of antimicrobial resistance, a seminally important public health challenge, may be favored. While this is a very plausible outcome of continued chemical pollution, there is little evidence or research evaluating this risk. The objective of the present study was to examine existing metagenomes from chemically polluted environments and evaluate whether there is evidence that pollution increases the relative abundance of genes and mobile genetic elements that are associated with antibiotic resistance. The key finding is that for some types of pollution, particularly in environments exposed to petroleum, efflux pumps are enriched, and these efflux pumps can confer resistance to multiple classes of medically important antibiotics that are typically associated with spp. or other Gram-negative bacteria. This finding makes clear the need for more investigation on the impact of chemical pollution on the environmental reservoir of ARGs and their association with mobile genetic elements that can contribute to horizontal gene transfer events.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10617411PMC
http://dx.doi.org/10.1128/aem.01047-23DOI Listing

Publication Analysis

Top Keywords

efflux pumps
20
chemical pollution
20
relative abundance
16
mobile genetic
12
genetic elements
12
polluted environments
12
multiple classes
12
multidrug efflux
8
chemically polluted
8
terrestrial aquatic
8

Similar Publications

Mechanisms of Azole Potentiation: Insights from Drug Repurposing Approaches.

ACS Infect Dis

January 2025

Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.

The emergence of azole resistance and tolerance in pathogenic fungi has emerged as a significant public health concern, emphasizing the urgency for innovative strategies to bolster the efficacy of azole-based treatments. Drug repurposing stands as a promising and practical avenue for advancing antifungal therapy, with the potential for swift clinical translation. This review offers a comprehensive overview of azole synergistic agents uncovered through drug repurposing strategies, alongside an in-depth exploration of the mechanisms by which these agents augment azole potency.

View Article and Find Full Text PDF

Mechanisms of thermal, acid, desiccation and osmotic tolerance of spp.

Crit Rev Food Sci Nutr

January 2025

College of Food Science and Engineering, Northwest A&F University, Yangling, China.

spp. exhibit remarkable resilience to extreme environmental stresses, including thermal, acidic, desiccation, and osmotic conditions, posing significant challenges to food safety. Their thermotolerance relies on heat shock proteins (HSPs), thermotolerance genomic islands, enhanced DNA repair mechanisms, and metabolic adjustments, ensuring survival under high-temperature conditions.

View Article and Find Full Text PDF

The increasing antibiotic resistance in Pseudomonas aeruginosa, responsible for both community-acquired and hospital-acquired infections, is of global significance. The primary mechanisms contributing to resistance development in P.aeruginosa include the increased activity of efflux pumps, decreased permeability of outer membrane porins and the production of carbapenemases.

View Article and Find Full Text PDF

Bacterial resistance is a major public health challenge. In Gram-negative bacteria, the synergy between multidrug efflux pumps and outer membrane impermeability determines the intracellular concentration of antibiotics. Consequently, it also dictates antibiotic activity on their respective targets.

View Article and Find Full Text PDF

The impact of antioxidant-ciprofloxacin combinations on the evolution of antibiotic resistance in Pseudomonas aeruginosa biofilms.

NPJ Biofilms Microbiomes

December 2024

Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, 2200, Denmark.

The evolution of antimicrobial resistance (AMR) in biofilms, driven by mechanisms like oxidative stress, is a major challenge. This study investigates whether antioxidants (AOs) such as N-acetyl-cysteine (NAC) and Edaravone (ED) can reduce AMR in Pseudomonas aeruginosa biofilms exposed to sub-inhibitory concentrations of ciprofloxacin (CIP). In vitro experimental evolution studies were conducted using flow cells and glass beads biofilm models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!