Amine Chemistry of Porous CO Adsorbents.

Acc Chem Res

Oxide & Organic Nanomaterials for Energy & Environment (ONE) Laboratory, Chemistry Program, Advanced Membranes & Porous Materials (AMPM) Center, KAUST Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.

Published: October 2023

ConspectusAs renewable energy and CO utilization technologies progress to make a more significant contribution to global emissions reduction, carbon capture remains a critical component of the mission. Current CO capture technologies involve operations at point sources such as fossil fuel-based power plants or source-agnostic like in direct air capture. Each strategy has its own advantages and limitations, but in common, they all employ sorption-based methods with the use of sorbents strongly adhering to CO. Amine solutions are the most widely used absorbents for industrial operations due to the robust chemical bonds formed between amines and CO under both dry and humid conditions, rendering excellent selectivity. Such strong binding, however, causes problematic regeneration. In contrast, purely physisorptive porous materials with high surface areas allow for the confinement of CO inside narrow pores/channels and have a lower regeneration energy demand but with decreased selectivity and capacity. The most promising solution would then be the unification of both types of sorbents in one system, which could bring about a practical adsorption-desorption process. In other words, the development of porous solid materials with tunable amine content is necessary to leverage the high contact surface of porous sorbents with the added ability to manipulate amine incorporation toward lower CO binding strength.To answer the call to uncover the most feasible amine chemistry in carbon capture, our group has devoted intense effort to the study of amine-based CO adsorbents for the past decade. Oriented along practicality, we put forth a principle for the design of our materials to be produced in no more than three synthetic steps with economically viable starting materials. Porous organic polymers with amine functionalities of various substitutions, meaning primary, secondary, and tertiary amines, were synthesized and studied for CO adsorption. Direct synthesis proved to be feasibly applicable for secondary and tertiary amine-incorporated porous polymers whereas primary-amine-based sorbents would be conveniently obtained via postsynthetic modifications. Sorbents based on tertiary amines exhibit purely physical adsorption behavior if the nitrogen atoms are placed adjacent to aromatic cores due to the conjugation effect that reduces the electron density of the amine. However, when such conjugation is inhibited, chemisorptive activity is observed. Secondary amine adsorbents, in turn, express a higher binding strength than tertiary amine counterparts, but both types can merit a strengthened binding by the physical impregnation of small-molecule amines. Sorbents with primary-amine tethers can be obtained via postsynthetic transformation of precursor functionalities, and for them, chemical adsorption is mainly at work. We conclude that mixed-amine systems could exhibit unprecedented binding mechanisms, resulting in exceptionally specific interactions that would be useful for the development of highly selective sorbents for CO.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.3c00367DOI Listing

Publication Analysis

Top Keywords

amine
9
amine chemistry
8
carbon capture
8
secondary tertiary
8
tertiary amines
8
sorbents
7
porous
6
binding
5
chemistry porous
4
porous adsorbents
4

Similar Publications

It has been well accumulated that G-quadruplex (G4-DNA) has great anticancer relevance, and various heterocyclic moieties have been synthesized and examined as potent G4-DNA binders with promising anticancer activity. Here, we have synthesized a series of naphthalimide-triazole-coumarin conjugates by substituting various amines and further examine their anticancer activity against 60 human cancer cell lines at 10 μM. One and five dose concentration results reveal low values of MG-MID GI for compounds including (3.

View Article and Find Full Text PDF

Cathodic Deoxygenative Alkylation of Nitro(hetero)arenes with Organic Halides.

Org Lett

January 2025

School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529090, P. R. China.

We have realized a cathodic deoxygenative alkylation between nitro(hetero)arenes and organic halides, employing bis(pinacolato)diboron (Bpin) and LiCl as additives to trap and stabilize the generated alkyl radicals and carbanions, thereby facilitating efficient N-O cleavage and selective C-N bond formation. The protocol offers an economical method for the efficient synthesis of multiple aromatic(hetero) amines, without the need for reactive reductants and the exclusion of air and moisture. Notably, the protocol is distinguished by scalability, broad functional group compatibility, and safe and mild conditions, demonstrating practicality in the synthesis and late-stage modification of various bioactive compounds.

View Article and Find Full Text PDF

The labile tautomerism of -unsubstituted 5-acyl-4-pyridones, which exist in the form of 4-pyridone or 4-hydroxypyridine depending on the solvent, has been demonstrated. This equilibrium determines the reactivity of pyridones and their ability to undergo substitution reactions of the OH group. A regioselective and convenient method for the construction of functionalized pyrazolo[4,3-]pyridines (30-93%) based on the intramolecular amination reaction of 4-pyridones with hydrazines has been developed.

View Article and Find Full Text PDF

Mitochondria-targeting nanostructures from enzymatically degradable fluorescent amphiphilic polyesters.

Nanoscale

January 2025

School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S. C. Mullick Road, Jadavpur, Kolkata 700032, India.

Water-soluble π-conjugated luminescent bioprobes have been broadly used in biomedical research but are limited by the nonbiodegradability associated with their rigid C-C backbones. In the present work, we introduced three naphthalene monoimide (NMI)-functionalized amphiphilic fluorescent polyesters (P1, P2, and P3) prepared by transesterification of functional diols with an activated diester monomer of adipic acid. These polyesters featured a side-chain NMI fluorophore, imparting the required hydrophobicity for self-assembly in water and endowing the polymeric nanoassemblies with green fluorescence.

View Article and Find Full Text PDF

Objective: This study evaluated the safety and efficacy of isoproterenol administration as an adjunct for achievement of target heart rate (HR) during dobutamine stress echocardiography (DSE).

Background: In DSE, optimal accuracy is achieved when a target HR of 85% of maximal predicted heart rate (MPHR) is attained. Although rarely studied, intravenous isoproterenol has been used as an adjunct therapy to dobutamine and atropine to increase chronotropic response during pharmacologic stress testing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!