Adjustable external Dacron annuloplasty in aortic valve repair.

Gen Thorac Cardiovasc Surg

Department of Cardiac Surgery of Artois, Centre Hospitalier de Lens Et Hôpital Privé de Bois Bernard, Ramsay Santé, France.

Published: March 2024

In aortic valve repair, whilst performing a Yacoub remodelling operation, the external annuloplasty of the aortic ring plays a very important role. Here we present an adjustable external Dacron annuloplasty as an additional tool, in very selected cases, that can help surgeons to further improve their immediate results thus influencing the long-term ones.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11748-023-01978-9DOI Listing

Publication Analysis

Top Keywords

adjustable external
8
external dacron
8
dacron annuloplasty
8
annuloplasty aortic
8
aortic valve
8
valve repair
8
repair aortic
4
repair whilst
4
whilst performing
4
performing yacoub
4

Similar Publications

Viscoelastic hydrogel combined with dynamic compression promotes osteogenic differentiation of bone marrow mesenchymal stem cells and bone repair in rats.

Regen Biomater

November 2024

Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China.

A biomechanical environment constructed exploiting the mechanical property of the extracellular matrix and external loading is essential for cell behaviour. Building suitable mechanical stimuli using feasible scaffold material and moderate mechanical loading is critical in bone tissue engineering for bone repair. However, the detailed mechanism of the mechanical regulation remains ambiguous.

View Article and Find Full Text PDF

A neuromechanics solution for adjustable robot compliance and accuracy.

Sci Robot

January 2025

Research Center for Information and Communication Technologies, Department of Computer Engineering, Automation and Robotics, University of Granada, Granada, Spain.

Robots have to adjust their motor behavior to changing environments and variable task requirements to successfully operate in the real world and physically interact with humans. Thus, robotics strives to enable a broad spectrum of adjustable motor behavior, aiming to mimic the human ability to function in unstructured scenarios. In humans, motor behavior arises from the integrative action of the central nervous system and body biomechanics; motion must be understood from a neuromechanics perspective.

View Article and Find Full Text PDF

Short-Wave Infrared Optoelectronics with Colloidal CdHgSe/ZnCdS Core/Shell Nanoplatelets.

ACS Photonics

January 2025

Photonic Nanomaterials, Istituto Italiano di Tecnologia, 16163 Genova, Italy.

Colloidal semiconductor nanocrystals (NCs) are an efficient and cost-effective class of nanomaterials for optoelectronic applications. Advancements in NC-based optoelectronic devices have resulted from progress in synthetic chemistry, adjustable surface properties, and optimized device architectures. Semiconductor nanoplatelets (NPLs) stand out among other NCs due to their precise growth control, yielding uniform thickness with submonolayer roughness.

View Article and Find Full Text PDF

Background: Surgical procedures to treat anterior shoulder instability are essentially divided into those for significant bone loss and those without relevant bone loss. However, there is a gray area between these procedures that would not require bone grafting but would benefit from improved stabilization mechanisms. This study evaluates a technique based on the triple soft tissue block, the dynamic anterior stabilization of the shoulder, using an adjustable button.

View Article and Find Full Text PDF

Regulation of TADF by Internal and External Heavy Atom Effect in D-A MOF for Heterocrystal based Temperature-Compensated Photonic Device.

Angew Chem Int Ed Engl

January 2025

School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China.

The application of temperature-compensated photonic device is hampered by poor accuracy and overly simplistic functions of propagation in photonic integrated circuits (PICs) field. Herein, we report a new library of donor-acceptor metal-organic framework (D-A MOF) with thermally activated delayed fluorescence (TADF) and the fabricating of temperature-compensated photonic device by virtue of the unique temperature response character of TADF emitters. Highly tunable through-space charge transfer (TSCT) of TADF was realized within the D-A MOFs through a novel strategy that synergistically combines the internal heavy atom effect (HAE) with an external HAE, induced by the incorporation of heavy atoms into different components, achieving the regulable photophysical indicators including adjustable PL wavelength (534 to 592 nm) and surging quantum yield (5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!