The majority of Candida species are known as non-pathogenic yeasts and rarely involved in human diseases. However, recently case reports of human infections caused by non-albicans Candida species have increased, mostly in immunocompromised hosts. Our study aimed to describe and characterize as thoroughly as possible, a new species of the Metschnikowia clade, named here Candida massiliensis (PMML0037), isolated from a clinical sample of human sputum. We targeted four discriminant genetic regions: "Internal Transcribed Spacers" of rRNA, D1/D2 domains (28S large subunit rRNA) and part of the genes encoding Translation Elongation Factor 1-α and β-tubulin2. The genetic data were compared to morphological characters, from scanning electron microscopy (TM 4000 Plus, SU5000), physiological, including the results of oxidation and assimilation tests of different carbon sources by the Biolog system, and chemical mapping by Energy-Dispersive X-ray Spectroscopy. Lastly, the in vitro antifungal susceptibility profile was performed using the E-test™ exponential gradient method. The multilocus analysis supported the genetic position of Candida massiliensis (PMML0037) as a new species of the Metschnikowia clade, and the phenotypic analysis highlighted its unique morphological and chemical profile when compared to the other Candida/Metschnikowia species included in the study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11046-023-00792-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!