A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Versatile lipoprotein-inspired nanocomposites rescue Alzheimer's cognitive dysfunction by promoting Aβ degradation and lessening oxidative stress. | LitMetric

The accumulation of amyloid-β (Aβ) into senile plaques and the resulting continuous oxidative stress are major pathogenic mechanisms in Alzheimer's disease (AD). In this study, we designed a lipoprotein-inspired nanoparticle to facilitate Aβ clearance and alleviate oxidative stress for the treatment of AD. Lipoprotein-like nanocomposites (RLA-rHDL@ANG) were fabricated by assembling reconstituted high density lipoprotein (rHDL) with an apoE-derived peptide (RLA) with Aβ binding and clearance capabilities, and were subsequently camouflaged using reactive oxygen species (ROS)-sensitive DSPE-TK-mPEG and DSPE-TK-PEG-ANG with brain penetration as well as ROS scavenging ability. Immunoelectron microscopy, fluorescence colocalization, and enzyme linked immunosorbent assay, together with a thioflavin-T (ThT) fluorescence quantitative test, showed that RLA-rHDL@ANG possessed the ability of high binding affinity to both Aβ monomers and oligomers, and disintegration of pre-formed Aβ aggregates. ROS level monitoring and transmission electron microscopy (TEM) showed that RLA-rHDL@ANG possessed ROS sensitivity and consumption properties. Transcellular assay and imaging showed that RLA-rHDL@ANG effectively facilitated blood-brain barrier (BBB) penetration and intracerebral accumulation. It promoted the efficient degradation of Aβ by microglia and neurons through lysosomal transport and elimination approaches. Four-week administration of RLA-rHDL@ANG effectively reduced Aβ deposition, decreased the ROS level and improved cognitive functions in AD mice. These findings indicate that multifunctional RLA-rHDL@ANG may serve as a promising and feasible candidate for managing the progression of AD.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nr03346eDOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
8
rla-rhdl@ang possessed
8
ros level
8
rla-rhdl@ang effectively
8
rla-rhdl@ang
6
versatile lipoprotein-inspired
4
lipoprotein-inspired nanocomposites
4
nanocomposites rescue
4
rescue alzheimer's
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!